Please note that LibreCat no longer supports Internet Explorer versions 8 or 9 (or earlier).

We recommend upgrading to the latest Internet Explorer, Google Chrome, or Firefox.

448 Publications


2021 | Conference Paper | LibreCat-ID: 24382
K. Gevers, V. Schöppner, and E. Hüllermeier, “Heated tool butt welding of two different materials –  Established methods versus artificial intelligence,” presented at the International Institute of Welding, online, 2021.
LibreCat
 

2021 | Journal Article | LibreCat-ID: 21004
M. D. Wever, A. Tornede, F. Mohr, and E. Hüllermeier, “AutoML for Multi-Label Classification: Overview and Empirical Evaluation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 1–1, 2021, doi: 10.1109/tpami.2021.3051276.
LibreCat | DOI
 

2021 | Journal Article | LibreCat-ID: 21092
F. Mohr, M. D. Wever, A. Tornede, and E. Hüllermeier, “Predicting Machine Learning Pipeline Runtimes in the Context of Automated Machine Learning,” IEEE Transactions on Pattern Analysis and Machine Intelligence.
LibreCat
 

2021 | Conference Paper | LibreCat-ID: 21198
J. M. Hanselle, A. Tornede, M. D. Wever, and E. Hüllermeier, “Algorithm Selection as Superset Learning: Constructing Algorithm Selectors from Imprecise Performance Data,” presented at the The 25th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD-2021), Delhi, India, 2021.
LibreCat
 

2021 | Journal Article | LibreCat-ID: 21535
V. Bengs, R. Busa-Fekete, A. El Mesaoudi-Paul, and E. Hüllermeier, “Preference-based Online Learning with Dueling Bandits: A Survey,” Journal of Machine Learning Research, vol. 22, no. 7, pp. 1–108, 2021.
LibreCat
 

2021 | Conference Paper | LibreCat-ID: 21570
T. Tornede, A. Tornede, M. D. Wever, and E. Hüllermeier, “Coevolution of Remaining Useful Lifetime Estimation Pipelines for Automated Predictive Maintenance,” presented at the Genetic and Evolutionary Computation Conference, 2021.
LibreCat
 

2021 | Conference Paper | LibreCat-ID: 23779
R. Bernijazov et al., “A Meta-Review on Artificial Intelligence in Product Creation,” presented at the 30th International Joint Conference on Artificial Intelligence (IJCAI 2021) - Workshop “AI and Product Design,” Montreal, Kanada, 2021.
LibreCat | Download (ext.)
 

2021 | Conference Paper | LibreCat-ID: 22913
E. Hüllermeier, F. Mohr, A. Tornede, and M. D. Wever, “Automated Machine Learning, Bounded Rationality, and Rational Metareasoning,” presented at the ECML/PKDD Workshop on Automating Data Science, Bilbao (Virtual), 2021.
LibreCat
 

2021 | Conference Paper | LibreCat-ID: 22914
F. Mohr and M. D. Wever, “Replacing the Ex-Def Baseline in AutoML by Naive AutoML,” presented at the 8th ICML Workshop on Automated Machine Learning, Virtual, 2021.
LibreCat
 

2021 | Preprint | LibreCat-ID: 21600 | OA
M. Dellnitz et al., “Efficient time stepping for numerical integration using reinforcement  learning,” arXiv:2104.03562. 2021.
LibreCat | Files available | Download (ext.)
 

2021 | Conference Paper | LibreCat-ID: 27381
C. Damke and E. Hüllermeier, “Ranking Structured Objects with Graph Neural Networks,” in Proceedings of The 24th International Conference on Discovery Science (DS 2021), Halifax, Canada, 2021, vol. 12986, pp. 166–180, doi: 10.1007/978-3-030-88942-5.
LibreCat | DOI | arXiv
 

2021 | Dissertation | LibreCat-ID: 27284 | OA
M. D. Wever, Automated Machine Learning for Multi-Label Classification. 2021.
LibreCat | Files available | DOI
 

2020 | Book Chapter | LibreCat-ID: 19521
K. Pfannschmidt and E. Hüllermeier, “Learning Choice Functions via Pareto-Embeddings,” in Lecture Notes in Computer Science, Cham, 2020.
LibreCat | DOI
 

2020 | Conference Paper | LibreCat-ID: 19953 | OA
C. Damke, V. Melnikov, and E. Hüllermeier, “A Novel Higher-order Weisfeiler-Lehman Graph Convolution,” in Proceedings of the 12th Asian Conference on Machine Learning (ACML 2020), Bangkok, Thailand, 2020, vol. 129, pp. 49–64.
LibreCat | Files available | arXiv
 

2020 | Conference Paper | LibreCat-ID: 21534
V. Bengs and E. Hüllermeier, “Preselection Bandits,” in International Conference on Machine Learning, 2020, pp. 778–787.
LibreCat
 

2020 | Preprint | LibreCat-ID: 21536
V. Bengs and E. Hüllermeier, “Multi-Armed Bandits with Censored Consumption of Resources,” arXiv:2011.00813. 2020.
LibreCat
 

2020 | Conference Paper | LibreCat-ID: 17407
A. Tornede, M. D. Wever, and E. Hüllermeier, “Extreme Algorithm Selection with Dyadic Feature Representation,” presented at the Discovery Science 2020, 2020.
LibreCat
 

2020 | Conference Paper | LibreCat-ID: 17408
J. M. Hanselle, A. Tornede, M. D. Wever, and E. Hüllermeier, “Hybrid Ranking and Regression for Algorithm Selection,” presented at the 43rd German Conference on Artificial Intelligence, 2020.
LibreCat
 

2020 | Conference Paper | LibreCat-ID: 17424
T. Tornede, A. Tornede, M. D. Wever, F. Mohr, and E. Hüllermeier, “AutoML for Predictive Maintenance: One Tool to RUL Them All,” presented at the IOTStream Workshop @ ECMLPKDD 2020, 2020, doi: 10.1007/978-3-030-66770-2_8.
LibreCat | DOI
 

2020 | Preprint | LibreCat-ID: 17605 | OA
S. H. Heid, M. D. Wever, and E. Hüllermeier, “Reliable Part-of-Speech Tagging of Historical Corpora through Set-Valued Prediction,” Journal of Data Mining and Digital Humanities. episciences.
LibreCat | Download (ext.)
 

2020 | Conference Paper | LibreCat-ID: 20306
A. Tornede, M. D. Wever, and E. Hüllermeier, “Towards Meta-Algorithm Selection,” presented at the Workshop MetaLearn 2020 @ NeurIPS 2020, Online, 2020.
LibreCat
 

2020 | Book Chapter | LibreCat-ID: 18014
A. El Mesaoudi-Paul, D. Weiß, V. Bengs, E. Hüllermeier, and K. Tierney, “Pool-Based Realtime Algorithm Configuration: A Preselection Bandit Approach,” in Learning and Intelligent Optimization. LION 2020., vol. 12096, Cham: Springer, 2020, pp. 216–232.
LibreCat | DOI
 

2020 | Preprint | LibreCat-ID: 18017
A. El Mesaoudi-Paul, V. Bengs, and E. Hüllermeier, “Online Preselection with Context Information under the Plackett-Luce  Model,” arXiv:2002.04275. .
LibreCat
 

2020 | Conference Paper | LibreCat-ID: 18276
A. Tornede, M. D. Wever, S. Werner, F. Mohr, and E. Hüllermeier, “Run2Survive: A Decision-theoretic Approach to Algorithm Selection based on Survival Analysis,” presented at the 12th Asian Conference on Machine Learning, Bangkok, Thailand, 2020.
LibreCat | Download (ext.)
 

2020 | Journal Article | LibreCat-ID: 16725
C. Richter, E. Hüllermeier, M.-C. Jakobs, and H. Wehrheim, “Algorithm Selection for Software Validation Based on Graph Kernels,” Journal of Automated Software Engineering.
LibreCat
 

2020 | Conference Paper | LibreCat-ID: 15629
M. D. Wever, A. Tornede, F. Mohr, and E. Hüllermeier, “LiBRe: Label-Wise Selection of Base Learners in Binary Relevance for Multi-Label Classification,” presented at the Symposium on Intelligent Data Analysis, Konstanz, Germany.
LibreCat
 

2020 | Journal Article | LibreCat-ID: 15025
M. D. Wever, L. van Rooijen, and H. Hamann, “Multi-Oracle Coevolutionary Learning of Requirements Specifications from Examples in On-The-Fly Markets,” Evolutionary Computation, vol. 28, no. 2, pp. 165–193, 2020, doi: 10.1162/evco_a_00266.
LibreCat | Files available | DOI
 

2019 | Preprint | LibreCat-ID: 19523
K. Pfannschmidt, P. Gupta, and E. Hüllermeier, “Learning Choice Functions: Concepts and Architectures,” arXiv:1901.10860. 2019.
LibreCat
 

2019 | Journal Article | LibreCat-ID: 17565
M.-L. Merten, N. Seemann, and M. D. Wever, “Grammatikwandel digital-kulturwissenschaftlich erforscht. Mittelniederdeutscher Sprachausbau im interdisziplinären Zugriff,” Niederdeutsches Jahrbuch, no. 142, pp. 124–146, 2019.
LibreCat
 

2019 | Preprint | LibreCat-ID: 18018
V. Bengs and H. Holzmann, “Uniform approximation in classical weak convergence theory,” arXiv:1903.09864. 2019.
LibreCat
 

2019 | Conference Abstract | LibreCat-ID: 8868
M. D. Wever, F. Mohr, E. Hüllermeier, and A. Hetzer, “Towards Automated Machine Learning for Multi-Label Classification,” presented at the European Conference on Data Analytics (ECDA), Bayreuth, Germany, 2019.
LibreCat | Files available
 

2019 | Journal Article | LibreCat-ID: 10578
V. K. Tagne, S. Fotso, L. A. Fono, and E. Hüllermeier, “Choice Functions Generated by Mallows and Plackett–Luce Relations,” New Mathematics and Natural Computation, vol. 15, no. 2, pp. 191–213, 2019.
LibreCat
 

2019 | Journal Article | LibreCat-ID: 15001
I. Couso, C. Borgelt, E. Hüllermeier, and R. Kruse, “Fuzzy Sets in Data Analysis: From Statistical Foundations to Machine Learning,” IEEE Computational Intelligence Magazine, pp. 31–44, 2019.
LibreCat | DOI
 

2019 | Journal Article | LibreCat-ID: 15002 | OA
W. Waegeman, K. Dembczynski, and E. Hüllermeier, “Multi-target prediction: a unifying view on problems and methods,” Data Mining and Knowledge Discovery, vol. 33, no. 2, pp. 293–324, 2019.
LibreCat | Files available | DOI
 

2019 | Conference Paper | LibreCat-ID: 15003
T. Mortier, M. Wydmuch, K. Dembczynski, E. Hüllermeier, and W. Waegeman, “Set-Valued Prediction in Multi-Class Classification,” in Proceedings of the 31st Benelux Conference on Artificial Intelligence {(BNAIC} 2019) and the 28th Belgian Dutch Conference on Machine Learning (Benelearn 2019), Brussels, Belgium, November 6-8, 2019, 2019.
LibreCat
 

2019 | Book Chapter | LibreCat-ID: 15004
M. Ahmadi Fahandar and E. Hüllermeier, “Feature Selection for Analogy-Based Learning to Rank,” in Discovery Science, Cham, 2019.
LibreCat | DOI
 

2019 | Book Chapter | LibreCat-ID: 15005
M. Ahmadi Fahandar and E. Hüllermeier, “Analogy-Based Preference Learning with Kernels,” in KI 2019: Advances in Artificial Intelligence, Cham, 2019.
LibreCat | DOI
 

2019 | Book Chapter | LibreCat-ID: 15006
V.-L. Nguyen, S. Destercke, and E. Hüllermeier, “Epistemic Uncertainty Sampling,” in Discovery Science, Cham, 2019.
LibreCat | DOI
 

2019 | Conference Paper | LibreCat-ID: 15007 | OA
V. Melnikov and E. Hüllermeier, “Learning to Aggregate: Tackling the Aggregation/Disaggregation Problem for OWA,” in Proceedings ACML, Asian Conference on Machine Learning (Proceedings of Machine Learning Research, 101), 2019.
LibreCat | Files available | DOI
 

2019 | Conference Paper | LibreCat-ID: 15009
N. Epple, S. Dari, L. Drees, V. Protschky, and A. Riener, “Influence of Cruise Control on Driver Guidance - a Comparison between System Generations and Countries,” in 2019 IEEE Intelligent Vehicles Symposium (IV), 2019.
LibreCat | DOI
 

2019 | Conference Paper | LibreCat-ID: 15011 | OA
A. Tornede, M. D. Wever, and E. Hüllermeier, “Algorithm Selection as Recommendation: From Collaborative Filtering to Dyad Ranking,” in Proceedings - 29. Workshop Computational Intelligence, Dortmund, 28. - 29. November 2019, Dortmund, 2019, pp. 135–146.
LibreCat | Files available
 

2019 | Conference Paper | LibreCat-ID: 15013
K. Brinker and E. Hüllermeier, “A Reduction of Label Ranking to Multiclass Classification,” in Proceedings ECML/PKDD, European Conference on Machine Learning and Knowledge Discovery in Databases, 2019.
LibreCat
 

2019 | Conference Paper | LibreCat-ID: 15014
E. Hüllermeier, I. Couso, and S. Diestercke, “Learning from Imprecise Data: Adjustments of Optimistic and Pessimistic Variants,” in Proceedings SUM 2019, International Conference on Scalable Uncertainty Management, 2019.
LibreCat
 

2019 | Journal Article | LibreCat-ID: 15015
S. Henzgen and E. Hüllermeier, “Mining Rank Data,” ACM Transactions on Knowledge Discovery from Data, pp. 1–36, 2019.
LibreCat | DOI
 

2019 | Journal Article | LibreCat-ID: 14027
V. Bengs, M. Eulert, and H. Holzmann, “Asymptotic confidence sets for the jump curve in bivariate regression problems,” Journal of Multivariate Analysis, pp. 291–312, 2019.
LibreCat | DOI
 

2019 | Journal Article | LibreCat-ID: 14028
V. Bengs and H. Holzmann, “Adaptive confidence sets for kink estimation,” Electronic Journal of Statistics, pp. 1523–1579, 2019.
LibreCat | DOI
 

2019 | Conference Abstract | LibreCat-ID: 13132
F. Mohr, M. D. Wever, A. Tornede, and E. Hüllermeier, “From Automated to On-The-Fly Machine Learning,” in INFORMATIK 2019: 50 Jahre Gesellschaft für Informatik – Informatik für Gesellschaft, Kassel, 2019, pp. 273–274.
LibreCat
 

2019 | Conference Paper | LibreCat-ID: 10232 | OA
M. D. Wever, F. Mohr, A. Tornede, and E. Hüllermeier, “Automating Multi-Label Classification Extending ML-Plan,” presented at the 6th ICML Workshop on Automated Machine Learning (AutoML 2019), Long Beach, CA, USA, 2019.
LibreCat | Files available
 

2018 | Conference Paper | LibreCat-ID: 2479 | OA
F. Mohr, M. D. Wever, E. Hüllermeier, and A. Faez, “(WIP) Towards the Automated Composition of Machine Learning Services,” in SCC, San Francisco, CA, USA, 2018.
LibreCat | Files available | DOI | Download (ext.)
 

2018 | Preprint | LibreCat-ID: 19524
K. Pfannschmidt, P. Gupta, and E. Hüllermeier, “Deep Architectures for Learning Context-dependent Ranking Functions,” arXiv:1803.05796. 2018.
LibreCat
 

Filters and Search Terms

department=355

Search

Filter Publications

Display / Sort

Citation Style: IEEE

Export / Embed