Please note that LibreCat no longer supports Internet Explorer versions 8 or 9 (or earlier).

We recommend upgrading to the latest Internet Explorer, Google Chrome, or Firefox.

448 Publications


2020 | Conference Paper | LibreCat-ID: 20306
Tornede, Alexander, et al. “Towards Meta-Algorithm Selection.” Workshop MetaLearn 2020 @ NeurIPS 2020, 2020.
LibreCat
 

2020 | Book Chapter | LibreCat-ID: 18014
El Mesaoudi-Paul, Adil, et al. “Pool-Based Realtime Algorithm Configuration: A Preselection Bandit Approach.” Learning and Intelligent Optimization. LION 2020., vol. 12096, Springer, 2020, pp. 216–32, doi:10.1007/978-3-030-53552-0_22.
LibreCat | DOI
 

2020 | Preprint | LibreCat-ID: 18017
El Mesaoudi-Paul, Adil, et al. “Online Preselection with Context Information under the Plackett-Luce  Model.” ArXiv:2002.04275.
LibreCat
 

2020 | Conference Paper | LibreCat-ID: 18276
Tornede, Alexander, et al. “Run2Survive: A Decision-Theoretic Approach to Algorithm Selection Based on Survival Analysis.” ACML 2020, 2020.
LibreCat | Download (ext.)
 

2020 | Journal Article | LibreCat-ID: 16725
Richter, Cedric, et al. “Algorithm Selection for Software Validation Based on Graph Kernels.” Journal of Automated Software Engineering, Springer.
LibreCat
 

2020 | Conference Paper | LibreCat-ID: 15629
Wever, Marcel Dominik, et al. LiBRe: Label-Wise Selection of Base Learners in Binary Relevance for Multi-Label Classification. Springer.
LibreCat
 

2020 | Journal Article | LibreCat-ID: 15025
Wever, Marcel Dominik, et al. “Multi-Oracle Coevolutionary Learning of Requirements Specifications from Examples in On-The-Fly Markets.” Evolutionary Computation, vol. 28, no. 2, MIT Press Journals, 2020, pp. 165–193, doi:10.1162/evco_a_00266.
LibreCat | Files available | DOI
 

2019 | Preprint | LibreCat-ID: 19523
Pfannschmidt, Karlson, et al. “Learning Choice Functions: Concepts and Architectures.” ArXiv:1901.10860, 2019.
LibreCat
 

2019 | Journal Article | LibreCat-ID: 17565
Merten, Marie-Luis, et al. “Grammatikwandel digital-kulturwissenschaftlich erforscht. Mittelniederdeutscher Sprachausbau im interdisziplinären Zugriff.” Niederdeutsches Jahrbuch, no. 142, 2019, pp. 124–46.
LibreCat
 

2019 | Preprint | LibreCat-ID: 18018
Bengs, Viktor, and Hajo Holzmann. “Uniform Approximation in Classical Weak Convergence Theory.” ArXiv:1903.09864, 2019.
LibreCat
 

2019 | Conference Abstract | LibreCat-ID: 8868
Wever, Marcel Dominik, et al. Towards Automated Machine Learning for Multi-Label Classification. 2019.
LibreCat | Files available
 

2019 | Journal Article | LibreCat-ID: 10578
Tagne, V. K., et al. “Choice Functions Generated by Mallows and Plackett–Luce Relations.” New Mathematics and Natural Computation, vol. 15, no. 2, 2019, pp. 191–213.
LibreCat
 

2019 | Journal Article | LibreCat-ID: 15001
Couso, Ines, et al. “Fuzzy Sets in Data Analysis: From Statistical Foundations to Machine Learning.” IEEE Computational Intelligence Magazine, 2019, pp. 31–44, doi:10.1109/mci.2018.2881642.
LibreCat | DOI
 

2019 | Journal Article | LibreCat-ID: 15002 | OA
Waegeman, Willem, et al. “Multi-Target Prediction: A Unifying View on Problems and Methods.” Data Mining and Knowledge Discovery, vol. 33, no. 2, 2019, pp. 293–324, doi:10.1007/s10618-018-0595-5.
LibreCat | Files available | DOI
 

2019 | Conference Paper | LibreCat-ID: 15003
Mortier, Thomas, et al. “Set-Valued Prediction in Multi-Class Classification.” Proceedings of the 31st Benelux Conference on Artificial Intelligence {(BNAIC} 2019) and the 28th Belgian Dutch Conference on Machine Learning (Benelearn 2019), Brussels, Belgium, November 6-8, 2019, 2019.
LibreCat
 

2019 | Book Chapter | LibreCat-ID: 15004
Ahmadi Fahandar, Mohsen, and Eyke Hüllermeier. “Feature Selection for Analogy-Based Learning to Rank.” Discovery Science, 2019, doi:10.1007/978-3-030-33778-0_22.
LibreCat | DOI
 

2019 | Book Chapter | LibreCat-ID: 15005
Ahmadi Fahandar, Mohsen, and Eyke Hüllermeier. “Analogy-Based Preference Learning with Kernels.” KI 2019: Advances in Artificial Intelligence, 2019, doi:10.1007/978-3-030-30179-8_3.
LibreCat | DOI
 

2019 | Book Chapter | LibreCat-ID: 15006
Nguyen, Vu-Linh, et al. “Epistemic Uncertainty Sampling.” Discovery Science, 2019, doi:10.1007/978-3-030-33778-0_7.
LibreCat | DOI
 

2019 | Conference Paper | LibreCat-ID: 15007 | OA
Melnikov, Vitaly, and Eyke Hüllermeier. “Learning to Aggregate: Tackling the Aggregation/Disaggregation Problem for OWA.” Proceedings ACML, Asian Conference on Machine Learning (Proceedings of Machine Learning Research, 101), 2019, doi:10.1016/j.jmva.2019.02.017.
LibreCat | Files available | DOI
 

2019 | Conference Paper | LibreCat-ID: 15009
Epple, Nico, et al. “Influence of Cruise Control on Driver Guidance - a Comparison between System Generations and Countries.” 2019 IEEE Intelligent Vehicles Symposium (IV), 2019, doi:10.1109/ivs.2019.8814100.
LibreCat | DOI
 

2019 | Conference Paper | LibreCat-ID: 15011 | OA
Tornede, Alexander, et al. “Algorithm Selection as Recommendation: From Collaborative Filtering to Dyad Ranking.” Proceedings - 29. Workshop Computational Intelligence, Dortmund, 28. - 29. November 2019, edited by Frank Hoffmann et al., KIT Scientific Publishing, Karlsruhe, 2019, pp. 135–46.
LibreCat | Files available
 

2019 | Conference Paper | LibreCat-ID: 15013
Brinker, Klaus, and Eyke Hüllermeier. “A Reduction of Label Ranking to Multiclass Classification.” Proceedings ECML/PKDD, European Conference on Machine Learning and Knowledge Discovery in Databases, 2019.
LibreCat
 

2019 | Conference Paper | LibreCat-ID: 15014
Hüllermeier, Eyke, et al. “Learning from Imprecise Data: Adjustments of Optimistic and Pessimistic Variants.” Proceedings SUM 2019, International Conference on Scalable Uncertainty Management, 2019.
LibreCat
 

2019 | Journal Article | LibreCat-ID: 15015
Henzgen, Sascha, and Eyke Hüllermeier. “Mining Rank Data.” ACM Transactions on Knowledge Discovery from Data, 2019, pp. 1–36, doi:10.1145/3363572.
LibreCat | DOI
 

2019 | Journal Article | LibreCat-ID: 14027
Bengs, Viktor, et al. “Asymptotic Confidence Sets for the Jump Curve in Bivariate Regression Problems.” Journal of Multivariate Analysis, 2019, pp. 291–312, doi:10.1016/j.jmva.2019.02.017.
LibreCat | DOI
 

2019 | Journal Article | LibreCat-ID: 14028
Bengs, Viktor, and Hajo Holzmann. “Adaptive Confidence Sets for Kink Estimation.” Electronic Journal of Statistics, 2019, pp. 1523–79, doi:10.1214/19-ejs1555.
LibreCat | DOI
 

2019 | Conference Abstract | LibreCat-ID: 13132
Mohr, Felix, et al. “From Automated to On-The-Fly Machine Learning.” INFORMATIK 2019: 50 Jahre Gesellschaft Für Informatik – Informatik Für Gesellschaft, Gesellschaft für Informatik e.V., 2019, pp. 273–74.
LibreCat
 

2019 | Conference Paper | LibreCat-ID: 10232 | OA
Wever, Marcel Dominik, et al. Automating Multi-Label Classification Extending ML-Plan. 2019.
LibreCat | Files available
 

2018 | Conference Paper | LibreCat-ID: 2479 | OA
Mohr, Felix, et al. “(WIP) Towards the Automated Composition of Machine Learning Services.” SCC, IEEE, 2018, doi:10.1109/SCC.2018.00039.
LibreCat | Files available | DOI | Download (ext.)
 

2018 | Preprint | LibreCat-ID: 19524
Pfannschmidt, Karlson, et al. “Deep Architectures for Learning Context-Dependent Ranking Functions.” ArXiv:1803.05796, 2018.
LibreCat
 

2018 | Conference Paper | LibreCat-ID: 2857 | OA
Mohr, Felix, et al. “Programmatic Task Network Planning.” Proceedings of the 1st ICAPS Workshop on Hierarchical Planning, AAAI, 2018, pp. 31–39.
LibreCat | Files available | Download (ext.)
 

2018 | Journal Article | LibreCat-ID: 24150
Ramaswamy, Arunselvan, and Shalabh Bhatnagar. “Stability of Stochastic Approximations with ‘Controlled Markov’ Noise and Temporal Difference Learning.” IEEE Transactions on Automatic Control, vol. 64, no. 6, IEEE, 2018, pp. 2614–20.
LibreCat
 

2018 | Journal Article | LibreCat-ID: 24151
Demirel, Burak, et al. “Deepcas: A Deep Reinforcement Learning Algorithm for Control-Aware Scheduling.” IEEE Control Systems Letters, vol. 2, no. 4, IEEE, 2018, pp. 737–42.
LibreCat
 

2018 | Conference Paper | LibreCat-ID: 2471 | OA
Mohr, Felix, et al. “On-The-Fly Service Construction with Prototypes.” SCC, IEEE Computer Society, 2018, doi:10.1109/SCC.2018.00036.
LibreCat | Files available | DOI | Download (ext.)
 

2018 | Journal Article | LibreCat-ID: 3402
Melnikov, Vitalik, and Eyke Hüllermeier. “On the Effectiveness of Heuristics for Learning Nested Dichotomies: An Empirical Analysis.” Machine Learning, 2018, doi:10.1007/s10994-018-5733-1.
LibreCat | Files available | DOI
 

2018 | Journal Article | LibreCat-ID: 3510 | OA
Mohr, Felix, et al. “ML-Plan: Automated Machine Learning via Hierarchical Planning.” Machine Learning, Springer, 2018, pp. 1495–515, doi:10.1007/s10994-018-5735-z.
LibreCat | Files available | DOI | Download (ext.)
 

2018 | Conference Paper | LibreCat-ID: 3552 | OA
Mohr, Felix, et al. “Reduction Stumps for Multi-Class Classification.” Proceedings of the Symposium on Intelligent Data Analysis, doi:10.1007/978-3-030-01768-2_19.
LibreCat | Files available | DOI | Download (ext.)
 

2018 | Conference Paper | LibreCat-ID: 3852 | OA
Wever, Marcel Dominik, et al. “ML-Plan for Unlimited-Length Machine Learning Pipelines.” ICML 2018 AutoML Workshop, 2018.
LibreCat | Files available | Download (ext.)
 

2018 | Conference Paper | LibreCat-ID: 2109 | OA
Wever, Marcel Dominik, et al. “Ensembles of Evolved Nested Dichotomies for Classification.” Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2018, Kyoto, Japan, July 15-19, 2018, ACM, 2018, doi:10.1145/3205455.3205562.
LibreCat | Files available | DOI | Download (ext.)
 

2018 | Preprint | LibreCat-ID: 17713 | OA
Wever, Marcel Dominik, et al. Automated Multi-Label Classification Based on ML-Plan. Arxiv, 2018.
LibreCat | Download (ext.)
 

2018 | Preprint | LibreCat-ID: 17714 | OA
Mohr, Felix, et al. Automated Machine Learning Service Composition. 2018.
LibreCat | Download (ext.)
 

2018 | Bachelorsthesis | LibreCat-ID: 5693
Graf, Helena. Ranking of Classification Algorithms in AutoML. Universität Paderborn, 2018.
LibreCat
 

2018 | Bachelorsthesis | LibreCat-ID: 5936
Scheibl, Manuel. Learning about Learning Curves from Dataset Properties. Universität Paderborn, 2018.
LibreCat
 

2018 | Book Chapter | LibreCat-ID: 6423
Schäfer, Dirk, and Eyke Hüllermeier. “Preference-Based Reinforcement Learning Using Dyad Ranking.” Discovery Science, Springer International Publishing, 2018, pp. 161–75, doi:10.1007/978-3-030-01771-2_11.
LibreCat | Files available | DOI
 

2018 | Conference (Editor) | LibreCat-ID: 10591
Abiteboul, S., et al., editors. Research Directions for Principles of Data Management. Vol. 7, no. 1, 2018, pp. 1–29.
LibreCat
 

2018 | Book Chapter | LibreCat-ID: 10783
Couso, Ines, and Eyke Hüllermeier. “Statistical Inference for Incomplete Ranking Data: A Comparison of Two Likelihood-Based Estimators.” Frontiers in Computational Intelligence, edited by Sanaz Mostaghim et al., Springer, 2018, pp. 31–46.
LibreCat
 

2018 | Journal Article | LibreCat-ID: 16038
Schäfer, D., and Eyke Hüllermeier. “Dyad Ranking Using Plackett-Luce Models Based on Joint Feature Representations.” Machine Learning, vol. 107, no. 5, 2018, pp. 903–41.
LibreCat
 

2018 | Conference Paper | LibreCat-ID: 10145
Ahmadi Fahandar, Mohsen, and Eyke Hüllermeier. “Learning to Rank Based on Analogical Reasoning.” Proc. 32 Nd AAAI Conference on Artificial Intelligence (AAAI), 2018, pp. 2951–58.
LibreCat
 

2018 | Conference Paper | LibreCat-ID: 10148
El Mesaoudi-Paul, Adil, et al. “Ranking Distributions Based on Noisy Sorting.” Proc. 35th Int. Conference on Machine Learning (ICML), Verlagsschriftenreihe des Heinz Nixdorf Instituts, Paderborn, 2018, pp. 3469–77.
LibreCat
 

2018 | Conference Paper | LibreCat-ID: 10149
Hesse, M., et al. “A Reinforcement Learning Strategy for the Swing-Up of the Double Pendulum on a Cart.” Proc. 4th Int. Conference on System-Integrated Intelligence: Intelligent, Flexible and Connected Systems in Products and Production, Procedia Manufacturing 24, 2018, pp. 15–20.
LibreCat
 

Filters and Search Terms

department=355

Search

Filter Publications

Display / Sort

Citation Style: MLA

Export / Embed