Please note that LibreCat no longer supports Internet Explorer versions 8 or 9 (or earlier).

We recommend upgrading to the latest Internet Explorer, Google Chrome, or Firefox.

179 Publications


2019 | Journal Article | LibreCat-ID: 15002
Waegeman, W., Dembczynski, K., & Hüllermeier, E. (2019). Multi-target prediction: a unifying view on problems and methods. Data Mining and Knowledge Discovery, 33(2), 293–324. https://doi.org/10.1007/s10618-018-0595-5
LibreCat | DOI
 

2019 | Journal Article | LibreCat-ID: 14028
Bengs, V., & Holzmann, H. (2019). Adaptive confidence sets for kink estimation. Electronic Journal of Statistics, 1523–1579. https://doi.org/10.1214/19-ejs1555
LibreCat | DOI
 

2019 | Conference Paper | LibreCat-ID: 15003
Mortier, T., Wydmuch, M., Dembczynski, K., Hüllermeier, E., & Waegeman, W. (2019). Set-Valued Prediction in Multi-Class Classification. In Proceedings of the 31st Benelux Conference on Artificial Intelligence {(BNAIC} 2019) and the 28th Belgian Dutch Conference on Machine Learning (Benelearn 2019), Brussels, Belgium, November 6-8, 2019.
LibreCat
 

2019 | Conference Paper | LibreCat-ID: 10232
Wever, M. D., Mohr, F., Tornede, A., & Hüllermeier, E. (2019). Automating Multi-Label Classification Extending ML-Plan. Presented at the 6th ICML Workshop on Automated Machine Learning (AutoML 2019), Long Beach, CA, USA.
LibreCat | Files available
 

2019 | Conference Paper | LibreCat-ID: 15009
Epple, N., Dari, S., Drees, L., Protschky, V., & Riener, A. (2019). Influence of Cruise Control on Driver Guidance - a Comparison between System Generations and Countries. In 2019 IEEE Intelligent Vehicles Symposium (IV). https://doi.org/10.1109/ivs.2019.8814100
LibreCat | DOI
 

2019 | Book Chapter | LibreCat-ID: 15004
Ahmadi Fahandar, M., & Hüllermeier, E. (2019). Feature Selection for Analogy-Based Learning to Rank. In Discovery Science. Cham. https://doi.org/10.1007/978-3-030-33778-0_22
LibreCat | DOI
 

2019 | Conference Paper | LibreCat-ID: 15011
Tornede, A., Wever, M. D., & Hüllermeier, E. (2019). Algorithm Selection as Recommendation: From Collaborative Filtering to Dyad Ranking. In F. Hoffmann, E. Hüllermeier, & R. Mikut (Eds.), Proceedings - 29. Workshop Computational Intelligence, Dortmund, 28. - 29. November 2019 (pp. 135–146). Dortmund: KIT Scientific Publishing, Karlsruhe.
LibreCat
 

2019 | Conference Abstract | LibreCat-ID: 8956
Hetzer, A., Wever, M. D., Mohr, F., & Hüllermeier, E. (2019). Algorithm Selection as Recommendation: From Collaborative Filtering to Dyad Ranking. Presented at the European Conference on Data Analysis (ECDA), Bayreuth, Germany.
LibreCat | Files available
 

2019 | Book Chapter | LibreCat-ID: 15005
Ahmadi Fahandar, M., & Hüllermeier, E. (2019). Analogy-Based Preference Learning with Kernels. In KI 2019: Advances in Artificial Intelligence. Cham. https://doi.org/10.1007/978-3-030-30179-8_3
LibreCat | DOI
 

2019 | Conference Abstract | LibreCat-ID: 8868
Wever, M. D., Mohr, F., Hüllermeier, E., & Hetzer, A. (2019). Towards Automated Machine Learning for Multi-Label Classification. Presented at the European Conference on Data Analytics (ECDA), Bayreuth, Germany.
LibreCat | Files available
 

2019 | Conference Abstract | LibreCat-ID: 13132
Mohr, F., Wever, M. D., Tornede, A., & Hüllermeier, E. (2019). From Automated to On-The-Fly Machine Learning. In INFORMATIK 2019: 50 Jahre Gesellschaft für Informatik – Informatik für Gesellschaft (pp. 273–274). Bonn: Gesellschaft für Informatik e.V.
LibreCat
 

2019 | Journal Article | LibreCat-ID: 15001
Couso, I., Borgelt, C., Hüllermeier, E., & Kruse, R. (2019). Fuzzy Sets in Data Analysis: From Statistical Foundations to Machine Learning. IEEE Computational Intelligence Magazine, 31–44. https://doi.org/10.1109/mci.2018.2881642
LibreCat | DOI
 

2019 | Journal Article | LibreCat-ID: 14027
Bengs, V., Eulert, M., & Holzmann, H. (2019). Asymptotic confidence sets for the jump curve in bivariate regression problems. Journal of Multivariate Analysis, 291–312. https://doi.org/10.1016/j.jmva.2019.02.017
LibreCat | DOI
 

2019 | Book Chapter | LibreCat-ID: 15006
Nguyen, V.-L., Destercke, S., & Hüllermeier, E. (2019). Epistemic Uncertainty Sampling. In Discovery Science. Cham. https://doi.org/10.1007/978-3-030-33778-0_7
LibreCat | DOI
 

2018 | Conference Paper | LibreCat-ID: 10184
Schäfer, D., & Hüllermeier, E. (2018). Preference-Based Reinforcement Learning Using Dyad Ranking. In Proc. 21st Int. Conference on Discovery Science (DS) (pp. 161–175).
LibreCat
 

2018 | Conference Paper | LibreCat-ID: 3852
Wever, M. D., Mohr, F., & Hüllermeier, E. (2018). ML-Plan for Unlimited-Length Machine Learning Pipelines. In ICML 2018 AutoML Workshop. Stockholm, Sweden.
LibreCat | Files available | Download (ext.)
 

2018 | Conference Paper | LibreCat-ID: 2479
Mohr, F., Wever, M. D., Hüllermeier, E., & Faez, A. (2018). (WIP) Towards the Automated Composition of Machine Learning Services. In SCC. San Francisco, CA, USA: IEEE. https://doi.org/10.1109/SCC.2018.00039
LibreCat | Files available | DOI | Download (ext.)
 

2018 | Conference Paper | LibreCat-ID: 10153
Mohr, F., Wever, M. D., & Hüllermeier, E. (2018). Reduction Stumps for Multi-class Classification. In Proc. 17th Int. Symposium on Intelligent Data Analysis (IDA) (pp. 225–237).
LibreCat
 

2018 | Bachelorsthesis | LibreCat-ID: 5936
Scheibl, M. (2018). Learning about learning curves from dataset properties.
LibreCat
 

2018 | Conference Paper | LibreCat-ID: 10185
Seemann, N., Geierhos, M., Merten, M.-L., Tophinke, D., Wever, M. D., & Hüllermeier, E. (2018). Supporting the Cognitive Process in Annotation Tasks. In Postersession Computerlinguistik der 40. Jahrestagung der Deutschen Gesellschaft für Sprachwissenschaft.
LibreCat
 

2018 | Conference Paper | LibreCat-ID: 10154
Mohr, F., Wever, M. D., Hüllermeier, E., & Faez, A. (2018). (WIP) Towards the Automated Composition of Machine Learning Services. In Proc. 15th Int. Conference on Services Computing (SCC) (pp. 241–244).
LibreCat
 

2018 | Conference Paper | LibreCat-ID: 10192
Wever, M. D., Mohr, F., & Hüllermeier, E. (2018). ML-Plan for Unlimited-Length Machine Learning Pipelines. In Int. Workshop on Automatic Machine Learning (AutoML) at ICML 2018.
LibreCat
 

2018 | Journal Article | LibreCat-ID: 10274
Melnikov, V., & Hüllermeier, E. (2018). On the effectiveness of heuristics for learning nested dichotomies: an empirial analysis. Machine Learning, 107(8–10), 1537–1560.
LibreCat
 

2018 | Conference (Editor) | LibreCat-ID: 10591
Abiteboul, S., Arenas, M., Barceló, P., Bienvenu, M., Calvanese, D., David, C., … Yi, K. (Eds.). (2018). Research Directions for Principles of Data Management (Vol. 7, pp. 1–29).
LibreCat
 

2018 | Conference Paper | LibreCat-ID: 10181
Nguyen, V.-L., Destercke, S., Masson, M.-H., & Hüllermeier, E. (2018). Reliable Multi-class Classification based on Pairwise Epistemic and Aleatoric Uncertainty. In Proc. 27th Int.Joint Conference on Artificial Intelligence (IJCAI) (pp. 5089–5095).
LibreCat
 

2018 | Conference Paper | LibreCat-ID: 2109
Wever, M. D., Mohr, F., & Hüllermeier, E. (2018). Ensembles of Evolved Nested Dichotomies for Classification. In Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2018, Kyoto, Japan, July 15-19, 2018. Kyoto, Japan: ACM. https://doi.org/10.1145/3205455.3205562
LibreCat | Files available | DOI | Download (ext.)
 

2018 | Conference Paper | LibreCat-ID: 2471
Mohr, F., Wever, M. D., & Hüllermeier, E. (2018). On-The-Fly Service Construction with Prototypes. In SCC. San Francisco, CA, USA: IEEE Computer Society. https://doi.org/10.1109/SCC.2018.00036
LibreCat | Files available | DOI | Download (ext.)
 

2018 | Book Chapter | LibreCat-ID: 6423
Schäfer, D., & Hüllermeier, E. (2018). Preference-Based Reinforcement Learning Using Dyad Ranking. In Discovery Science (pp. 161–175). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-01771-2_11
LibreCat | Files available | DOI
 

2018 | Conference Paper | LibreCat-ID: 10148
El Mesaoudi-Paul, A., Hüllermeier, E., & Busa-Fekete, R. (2018). Ranking Distributions based on  Noisy Sorting. In Proc. 35th Int. Conference on Machine Learning (ICML) (pp. 3469–3477).
LibreCat
 

2018 | Conference Paper | LibreCat-ID: 3552
Mohr, F., Wever, M. D., & Hüllermeier, E. (n.d.). Reduction Stumps for Multi-Class Classification. In Proceedings of the Symposium on Intelligent Data Analysis. ‘s-Hertogenbosch, the Netherlands. https://doi.org/10.1007/978-3-030-01768-2_19
LibreCat | Files available | DOI | Download (ext.)
 

2018 | Conference Paper | LibreCat-ID: 10149
Hesse, M., Timmermann, J., Hüllermeier, E., & Trächtler, A. (2018). A Reinforcement Learning Strategy for the Swing-Up of the Double Pendulum on a Cart. In Proc. 4th Int. Conference on System-Integrated Intelligence: Intelligent, Flexible and Connected Systems in Products and Production, Procedia Manufacturing 24 (pp. 15–20).
LibreCat
 

2018 | Journal Article | LibreCat-ID: 10276
Schäfer, D., & Hüllermeier, E. (2018). Dyad Ranking Using Plackett-Luce Models based on joint feature representations. Machine Learning, 107(5), 903–941.
LibreCat
 

2018 | Book Chapter | LibreCat-ID: 10783
Couso, I., & Hüllermeier, E. (2018). Statistical Inference for Incomplete Ranking Data: A Comparison of two likelihood-based estimators. In S. Mostaghim, A. Nürnberger, & C. Borgelt (Eds.), Frontiers in Computational Intelligence (pp. 31–46). Springer.
LibreCat
 

2018 | Conference Paper | LibreCat-ID: 2857
Mohr, F., Lettmann, T., Hüllermeier, E., & Wever, M. D. (2018). Programmatic Task Network Planning. In Proceedings of the 28th International Conference on Automated Planning and Scheduling. Delft, Netherlands: AAAI.
LibreCat | Files available | Download (ext.)
 

2018 | Journal Article | LibreCat-ID: 3402
Melnikov, V., & Hüllermeier, E. (2018). On the effectiveness of heuristics for learning nested dichotomies: an empirical analysis. Machine Learning. https://doi.org/10.1007/s10994-018-5733-1
LibreCat | Files available | DOI
 

2018 | Bachelorsthesis | LibreCat-ID: 5693
Graf, H. (2018). Ranking of Classification Algorithms in AutoML.
LibreCat
 

2018 | Conference Abstract | LibreCat-ID: 1379
Seemann, N., Geierhos, M., Merten, M.-L., Tophinke, D., Wever, M. D., & Hüllermeier, E. (2018). Supporting the Cognitive Process in Annotation Tasks. In K. Eckart & D. Schlechtweg (Eds.), Postersession Computerlinguistik der 40. Jahrestagung der Deutschen Gesellschaft für Sprachwissenschaft. Stuttgart, Germany.
LibreCat | Files available | Download (ext.)
 

2018 | Conference Paper | LibreCat-ID: 10152
Mohr, F., Wever, M. D., & Hüllermeier, E. (2018). On-the-Fly Service Construction with Prototypes. In Proc. 15th Int. Conference on Services Computing (SCC) (pp. 225–232).
LibreCat
 

2018 | Conference Paper | LibreCat-ID: 10145
Ahmadi Fahandar, M., & Hüllermeier, E. (2018). Learning to Rank Based on Analogical Reasoning. In Proc. 32 nd AAAI Conference on Artificial Intelligence (AAAI) (pp. 2951–2958).
LibreCat
 

2018 | Journal Article | LibreCat-ID: 10784
Mohr, F., Wever, M. D., & Hüllermeier, E. (2018). ML-Plan: Automated machine learning via hierarchical planning. Machine Learning, 107(8–10), 1495–1515.
LibreCat
 

2018 | Conference Paper | LibreCat-ID: 10188
Wever, M. D., Mohr, F., & Hüllermeier, E. (2018). Ensembles of evolved nested dichotomies for classificaton. In Proc. Genetic and Evolutionary Computation Conference (GECCO) (pp. 561–568).
LibreCat
 

2018 | Journal Article | LibreCat-ID: 3510
Mohr, F., Wever, M. D., & Hüllermeier, E. (2018). ML-Plan: Automated Machine Learning via Hierarchical Planning. Machine Learning. https://doi.org/10.1007/s10994-018-5735-z
LibreCat | Files available | DOI | Download (ext.)
 

2017 | Bachelorsthesis | LibreCat-ID: 5694
Schnitker, N. N. (2017). Genetischer Algorithmus zur Erstellung von Ensembles von Nested Dichotomies.
LibreCat
 

2017 | Conference Paper | LibreCat-ID: 1180
Wever, M. D., Mohr, F., & Hüllermeier, E. (2017). Automatic Machine Learning: Hierachical Planning Versus Evolutionary Optimization. In 27th Workshop Computational Intelligence. Dortmund.
LibreCat | Files available | Download (ext.)
 

2017 | Conference Paper | LibreCat-ID: 10204
Ewerth, R., Springstein, M., Müller, E., Balz, A., Gehlhaar, J., Naziyok, T., … Hüllermeier, E. (2017). Estimating relative depth in single images via rankboost. In Proc. IEEE Int. Conf. on Multimedia and Expo (ICME 2017) (pp. 919–924).
LibreCat
 

2017 | Conference Paper | LibreCat-ID: 10216
Shaker, A., Heldt, W., & Hüllermeier, E. (2017). Learning TSK Fuzzy Rules from Data Streams. In Proceedings ECML/PKDD, European Conference on Machine Learning and Knowledge Discovery in Databases, Skopje, Macedonia.
LibreCat
 

2017 | Conference Paper | LibreCat-ID: 10209
Ahmadi Fahandar, M., & Hüllermeier, E. (2017). Learning to Rank based on Analogical Reasoning. In Proc. AAAI 2017, 32nd AAAI Conference on Artificial Intelligence.
LibreCat
 

2017 | Conference Abstract | LibreCat-ID: 5722
Gupta, P., Hetzer, A., Tornede, T., Gottschalk, S., Kornelsen, A., Osterbrink, S., … Hüllermeier, E. (2017). jPL: A Java-based Software Framework for Preference Learning. Presented at the WDA 2017 Workshops: KDML, FGWM, IR, and FGDB, Rostock.
LibreCat
 

2017 | Conference Paper | LibreCat-ID: 10111
Mohr, F., Lettmann, T., & Hüllermeier, E. (2017). Planning with Independent Task Networks. In Proceedings of the 40th Annual German Conference on AI (KI 2017) (Vol. 10505, pp. 193–206). Dortmund, Germany: Springer.
LibreCat
 

2017 | Conference Paper | LibreCat-ID: 10205
Ahmadi Fahandar, M., Hüllermeier, E., & Couso, I. (2017). Statistical Inference for Incomplete Ranking Data: The Case of Rank-Dependent  Coarsening. In Proc. 34th Int. Conf. on Machine Learning (ICML 2017) (pp. 1078–1087).
LibreCat
 

Filters and Search Terms

department=355

Search

Filter Publications

Display / Sort

Citation Style: APA

Export / Embed