Please note that LibreCat no longer supports Internet Explorer versions 8 or 9 (or earlier).
We recommend upgrading to the latest Internet Explorer, Google Chrome, or Firefox.
197 Publications
2020 | Conference Paper | LibreCat-ID: 46330
Seiler M, Pohl J, Bossek J, Kerschke P, Trautmann H. Deep Learning as a Competitive Feature-Free Approach for Automated Algorithm Selection on the Traveling Salesperson Problem. In: Bäck T, Preuss M, Deutz A, et al., eds. Proceedings of the 16$^th$ International Conference on Parallel Problem Solving from Nature (PPSN XVI). ; 2020:48–64. doi:10.1007/978-3-030-58112-1_4
LibreCat
| DOI
2020 | Journal Article | LibreCat-ID: 46334
Bossek J, Kerschke P, Trautmann H. A multi-objective perspective on performance assessment and automated selection of single-objective optimization algorithms. Applied Soft Computing. 2020;88:105901. doi:https://doi.org/10.1016/j.asoc.2019.105901
LibreCat
| DOI
2020 | Conference Paper | LibreCat-ID: 46322
Bossek J, Grimme C, Rudolph G, Trautmann H. Towards Decision Support in Dynamic Bi-Objective Vehicle Routing. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC). ; 2020:1–8. doi:10.1109/CEC48606.2020.9185778
LibreCat
| DOI
2020 | Conference Paper | LibreCat-ID: 46324
Bossek J, Kerschke P, Trautmann H. Anytime Behavior of Inexact TSP Solvers and Perspectives for Automated Algorithm Selection. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC). IEEE; 2020:1–8.
LibreCat
2020 | Conference Paper | LibreCat-ID: 46323
Bossek J, Grimme C, Trautmann H. Dynamic Bi-Objective Routing of Multiple Vehicles. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO ’20). ACM; 2020:166–174.
LibreCat
2019 | Conference Paper | LibreCat-ID: 46343
Grimme C, Kerschke P, Trautmann H. Multimodality in Multi-Objective Optimization — More Boon than Bane? In: Deb K, Goodman E, Coello CCA, et al., eds. Proceedings of the 10$^th$ International Conference on Evolutionary Multi-Criterion Optimization (EMO). Vol 11411. Lecture Notes in Computer Science. Springer; 2019:126–138. doi:10.1007/978-3-030-12598-1_11
LibreCat
| DOI
2019 | Journal Article | LibreCat-ID: 46345
Kerschke P, Hoos HH, Neumann F, Trautmann H. Automated Algorithm Selection: Survey and Perspectives. Evolutionary Computation (ECJ). 2019;27(1):3–45. doi:10.1162/evco_a_00242
LibreCat
| DOI
2019 | Journal Article | LibreCat-ID: 46344
Carnein M, Trautmann H. Optimizing Data Stream Representation: An Extensive Survey on Stream Clustering Algorithms. Business and Information Systems Engineering (BISE). 2019;61(3):277–297.
LibreCat
2019 | Conference Paper | LibreCat-ID: 46340
Carnein M, Homann L, Trautmann H, Vossen G. A Recommender System Based on Omni-Channel Customer Data. In: Proceedings of the 21$^st$ IEEE Conference on Business Informatics (CBI’ 19). ; 2019:65–74.
LibreCat
2019 | Conference Paper | LibreCat-ID: 46341
Carnein M, Trautmann H. Customer Segmentation Based on Transactional Data Using Stream Clustering. In: Proceedings of the 23$^rd$ Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD ’19). ; 2019:280–292.
LibreCat
2019 | Conference Paper | LibreCat-ID: 46342
Grimme C, Kerschke P, Emmerich MTM, Preuss M, Deutz AH, Trautmann H. Sliding to the Global Optimum: How to Benefit from Non-Global Optima in Multimodal Multi-Objective Optimization. In: AIP Conference Proceedings. AIP Publishing; 2019:020052-1-020052-020054. doi:10.1063/1.5090019
LibreCat
| DOI
2019 | Book Chapter | LibreCat-ID: 46336
Kerschke P, Trautmann H. Comprehensive Feature-Based Landscape Analysis of Continuous and Constrained Optimization Problems Using the R-package flacco. In: Bauer N, Ickstadt K, Lübke K, Szepannek G, Trautmann H, Vichi M, eds. Applications in Statistical Computing. Springer; 2019:93–123. doi:10.1007/978-3-030-25147-5_7
LibreCat
| DOI
2019 | Book | LibreCat-ID: 46335
Trautmann H. Applications in Statistical Computing — From Music Data Analysis to Industrial Quality Improvement. Springer International Publishing; 2019.
LibreCat
2019 | Journal Article | LibreCat-ID: 46346
Kerschke P, Trautmann H. Automated Algorithm Selection on Continuous Black-Box Problems By Combining Exploratory Landscape Analysis and Machine Learning. Evolutionary Computation (ECJ). 2019;27(1):99–127. doi:10.1162/evco_a_00236
LibreCat
| DOI
2019 | Journal Article | LibreCat-ID: 46347
Kerschke P, Wang H, Preuss M, et al. Search Dynamics on Multimodal Multi-Objective Problems. Evolutionary Computation (ECJ). 2019;27(4):577–609. doi:10.1162/evco_a_00234
LibreCat
| DOI
2019 | Conference Paper | LibreCat-ID: 48841
Bossek J, Grimme C, Meisel S, Rudolph G, Trautmann H. Bi-Objective Orienteering: Towards a Dynamic Multi-objective Evolutionary Algorithm. In: Deb K, Goodman E, Coello Coello CA, et al., eds. Evolutionary Multi-Criterion Optimization (EMO). Lecture Notes in Computer Science. Springer International Publishing; 2019:516–528. doi:10.1007/978-3-030-12598-1_41
LibreCat
| DOI
2019 | Conference Paper | LibreCat-ID: 48842
Bossek J, Kerschke P, Neumann A, Wagner M, Neumann F, Trautmann H. Evolving Diverse TSP Instances by Means of Novel and Creative Mutation Operators. In: Proceedings of the 15th ACM/SIGEVO Conference on Foundations of Genetic Algorithms. FOGA ’19. Association for Computing Machinery; 2019:58–71. doi:10.1145/3299904.3340307
LibreCat
| DOI
2019 | Conference Paper | LibreCat-ID: 48843
Bossek J, Neumann F, Peng P, Sudholt D. Runtime Analysis of Randomized Search Heuristics for Dynamic Graph Coloring. In: Proceedings of the Genetic and Evolutionary Computation Conference. GECCO ’19. Association for Computing Machinery; 2019:1443–1451. doi:10.1145/3321707.3321792
LibreCat
| DOI
2019 | Conference Paper | LibreCat-ID: 48840
Bossek J, Grimme C, Neumann F. On the Benefits of Biased Edge-Exchange Mutation for the Multi-Criteria Spanning Tree Problem. In: Proceedings of the Genetic and Evolutionary Computation Conference. GECCO ’19. Association for Computing Machinery; 2019:516–523. doi:10.1145/3321707.3321818
LibreCat
| DOI
2019 | Conference Paper | LibreCat-ID: 48858
Bossek J, Grimme C. Solving Scalarized Subproblems within Evolutionary Algorithms for Multi-criteria Shortest Path Problems. In: Battiti R, Brunato M, Kotsireas I, Pardalos PM, eds. Learning and Intelligent Optimization. Lecture Notes in Computer Science. Springer International Publishing; 2019:184–198. doi:10.1007/978-3-030-05348-2_17
LibreCat
| DOI