14 Publications
2023 | Preprint | LibreCat-ID: 44512 |

Uhlemeyer, Svenja, et al. “Detecting Novelties with Empty Classes.” ArXiv:2305.00983, 2023.
LibreCat
| Download (ext.)
| arXiv
2023 | Conference Paper | LibreCat-ID: 31880 |

Nguyen, Duc Anh, et al. “Memorization-Dilation: Modeling Neural Collapse Under Noise.” International Conference on Learning Representations, ICLR, 2023.
LibreCat
| Download (ext.)
2023 | Preprint | LibreCat-ID: 45911 |

Lienen, Julian, and Eyke Hüllermeier. “Mitigating Label Noise through Data Ambiguation.” ArXiv:2305.13764, 2023.
LibreCat
| Download (ext.)
| arXiv
2022 | Conference Paper | LibreCat-ID: 34542
Campagner, Andrea, et al. “Scikit-Weak: A Python Library for Weakly Supervised Machine Learning.” Lecture Notes in Computer Science, vol. 13633, Springer, 2022, pp. 57–70.
LibreCat
2022 | Preprint | LibreCat-ID: 31545 |

Demir, Caglar, et al. “Kronecker Decomposition for Knowledge Graph Embeddings.” ArXiv:2205.06560, 2022.
LibreCat
| Download (ext.)
2022 | Preprint | LibreCat-ID: 31546 |

Lienen, Julian, et al. “Conformal Credal Self-Supervised Learning.” ArXiv:2205.15239, 2022.
LibreCat
| Download (ext.)
2021 | Conference Paper | LibreCat-ID: 27161
Lienen, Julian, and Eyke Hüllermeier. “Credal Self-Supervised Learning.” Advances in Neural Information Processing Systems 34: Annual Conference on Neural Information Processing Systems, NeurIPS, 2021.
LibreCat
2021 | Conference Paper | LibreCat-ID: 27162
Lienen, Julian, et al. “Robust Regression for Monocular Depth Estimation.” 13th Asian Conference on Machine Learning, ACML, 2021.
LibreCat
2021 | Journal Article | LibreCat-ID: 21636
Lienen, Julian, and Eyke Hüllermeier. “Instance Weighting through Data Imprecisiation.” International Journal of Approximate Reasoning, Elsevier, 2021.
LibreCat
| Download (ext.)
2021 | Conference Paper | LibreCat-ID: 21637 |

Lienen, Julian, and Eyke Hüllermeier. “From Label Smoothing to Label Relaxation.” Proceedings of the 35th AAAI Conference on Artificial Intelligence, AAAI, vol. 35, no. 10, AAAI Press, 2021, pp. 8583–91.
LibreCat
| Download (ext.)
2021 | Conference Paper | LibreCat-ID: 22280
Lienen, Julian, et al. “Monocular Depth Estimation via Listwise Ranking Using the Plackett-Luce Model.” Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, 2021, pp. 14595–604.
LibreCat
2021 | Preprint | LibreCat-ID: 22509 |

Lienen, Julian, and Eyke Hüllermeier. “Credal Self-Supervised Learning.” ArXiv:2106.11853, 2021.
LibreCat
| Download (ext.)
2020 | Preprint | LibreCat-ID: 20211 |

Lienen, Julian, and Eyke Hüllermeier. “Monocular Depth Estimation via Listwise Ranking Using the Plackett-Luce Model.” ArXiv:2010.13118, 2020.
LibreCat
| Download (ext.)
2019 | Mastersthesis | LibreCat-ID: 16415
Lienen, Julian. Automated Feature Engineering on Time Series Data. 2019.
LibreCat
14 Publications
2023 | Preprint | LibreCat-ID: 44512 |

Uhlemeyer, Svenja, et al. “Detecting Novelties with Empty Classes.” ArXiv:2305.00983, 2023.
LibreCat
| Download (ext.)
| arXiv
2023 | Conference Paper | LibreCat-ID: 31880 |

Nguyen, Duc Anh, et al. “Memorization-Dilation: Modeling Neural Collapse Under Noise.” International Conference on Learning Representations, ICLR, 2023.
LibreCat
| Download (ext.)
2023 | Preprint | LibreCat-ID: 45911 |

Lienen, Julian, and Eyke Hüllermeier. “Mitigating Label Noise through Data Ambiguation.” ArXiv:2305.13764, 2023.
LibreCat
| Download (ext.)
| arXiv
2022 | Conference Paper | LibreCat-ID: 34542
Campagner, Andrea, et al. “Scikit-Weak: A Python Library for Weakly Supervised Machine Learning.” Lecture Notes in Computer Science, vol. 13633, Springer, 2022, pp. 57–70.
LibreCat
2022 | Preprint | LibreCat-ID: 31545 |

Demir, Caglar, et al. “Kronecker Decomposition for Knowledge Graph Embeddings.” ArXiv:2205.06560, 2022.
LibreCat
| Download (ext.)
2022 | Preprint | LibreCat-ID: 31546 |

Lienen, Julian, et al. “Conformal Credal Self-Supervised Learning.” ArXiv:2205.15239, 2022.
LibreCat
| Download (ext.)
2021 | Conference Paper | LibreCat-ID: 27161
Lienen, Julian, and Eyke Hüllermeier. “Credal Self-Supervised Learning.” Advances in Neural Information Processing Systems 34: Annual Conference on Neural Information Processing Systems, NeurIPS, 2021.
LibreCat
2021 | Conference Paper | LibreCat-ID: 27162
Lienen, Julian, et al. “Robust Regression for Monocular Depth Estimation.” 13th Asian Conference on Machine Learning, ACML, 2021.
LibreCat
2021 | Journal Article | LibreCat-ID: 21636
Lienen, Julian, and Eyke Hüllermeier. “Instance Weighting through Data Imprecisiation.” International Journal of Approximate Reasoning, Elsevier, 2021.
LibreCat
| Download (ext.)
2021 | Conference Paper | LibreCat-ID: 21637 |

Lienen, Julian, and Eyke Hüllermeier. “From Label Smoothing to Label Relaxation.” Proceedings of the 35th AAAI Conference on Artificial Intelligence, AAAI, vol. 35, no. 10, AAAI Press, 2021, pp. 8583–91.
LibreCat
| Download (ext.)
2021 | Conference Paper | LibreCat-ID: 22280
Lienen, Julian, et al. “Monocular Depth Estimation via Listwise Ranking Using the Plackett-Luce Model.” Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, 2021, pp. 14595–604.
LibreCat
2021 | Preprint | LibreCat-ID: 22509 |

Lienen, Julian, and Eyke Hüllermeier. “Credal Self-Supervised Learning.” ArXiv:2106.11853, 2021.
LibreCat
| Download (ext.)
2020 | Preprint | LibreCat-ID: 20211 |

Lienen, Julian, and Eyke Hüllermeier. “Monocular Depth Estimation via Listwise Ranking Using the Plackett-Luce Model.” ArXiv:2010.13118, 2020.
LibreCat
| Download (ext.)
2019 | Mastersthesis | LibreCat-ID: 16415
Lienen, Julian. Automated Feature Engineering on Time Series Data. 2019.
LibreCat