Cryogenic electro-optic modulation in titanium in-diffused lithium niobate waveguides

F. Thiele, F. vom Bruch, J. Brockmeier, M. Protte, T. Hummel, R. Ricken, V. Quiring, S. Lengeling, H. Herrmann, C. Eigner, C. Silberhorn, T. Bartley, Journal of Physics: Photonics 4 (2022).

Download
No fulltext has been uploaded.
Journal Article | Published | English
Abstract
<jats:title>Abstract</jats:title> <jats:p>Lithium niobate is a promising platform for integrated quantum optics. In this platform, we aim to efficiently manipulate and detect quantum states by combining superconducting single photon detectors and modulators. The cryogenic operation of a superconducting single photon detector dictates the optimisation of the electro-optic modulators under the same operating conditions. To that end, we characterise a phase modulator, directional coupler, and polarisation converter at both ambient and cryogenic temperatures. The operation voltage <jats:inline-formula> <jats:tex-math><?CDATA $V_{\pi/2}$?></jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msub> <mml:mi>V</mml:mi> <mml:mrow> <mml:mi>π</mml:mi> <mml:mrow> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> </mml:msub> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="jpphotonac6c63ieqn1.gif" xlink:type="simple" /> </jats:inline-formula> of these modulators increases, due to the decrease in the electro-optic effect, by 74% for the phase modulator, 84% for the directional coupler and 35% for the polarisation converter below 8.5<jats:inline-formula> <jats:tex-math><?CDATA $\,\mathrm{K}$?></jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mrow> <mml:mi mathvariant="normal">K</mml:mi> </mml:mrow> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="jpphotonac6c63ieqn2.gif" xlink:type="simple" /> </jats:inline-formula>. The phase modulator preserves its broadband nature and modulates light in the characterised wavelength range. The unbiased bar state of the directional coupler changed by a wavelength shift of 85<jats:inline-formula> <jats:tex-math><?CDATA $\,\mathrm{nm}$?></jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mrow> <mml:mi mathvariant="normal">n</mml:mi> <mml:mi mathvariant="normal">m</mml:mi> </mml:mrow> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="jpphotonac6c63ieqn3.gif" xlink:type="simple" /> </jats:inline-formula> while cooling the device down to 5<jats:inline-formula> <jats:tex-math><?CDATA $\,\mathrm{K}$?></jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mrow> <mml:mi mathvariant="normal">K</mml:mi> </mml:mrow> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="jpphotonac6c63ieqn4.gif" xlink:type="simple" /> </jats:inline-formula>. The polarisation converter uses periodic poling to phasematch the two orthogonal polarisations. The phasematched wavelength of the utilised poling changes by 112<jats:inline-formula> <jats:tex-math><?CDATA $\,\mathrm{nm}$?></jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mrow> <mml:mi mathvariant="normal">n</mml:mi> <mml:mi mathvariant="normal">m</mml:mi> </mml:mrow> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="jpphotonac6c63ieqn5.gif" xlink:type="simple" /> </jats:inline-formula> when cooling to 5<jats:inline-formula> <jats:tex-math><?CDATA $\,\mathrm{K}$?></jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mrow> <mml:mi mathvariant="normal">K</mml:mi> </mml:mrow> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="jpphotonac6c63ieqn6.gif" xlink:type="simple" /> </jats:inline-formula>.</jats:p>
Publishing Year
Journal Title
Journal of Physics: Photonics
Volume
4
Issue
3
Article Number
034004
ISSN
LibreCat-ID

Cite this

Thiele F, vom Bruch F, Brockmeier J, et al. Cryogenic electro-optic modulation in titanium in-diffused lithium niobate waveguides. Journal of Physics: Photonics. 2022;4(3). doi:10.1088/2515-7647/ac6c63
Thiele, F., vom Bruch, F., Brockmeier, J., Protte, M., Hummel, T., Ricken, R., Quiring, V., Lengeling, S., Herrmann, H., Eigner, C., Silberhorn, C., & Bartley, T. (2022). Cryogenic electro-optic modulation in titanium in-diffused lithium niobate waveguides. Journal of Physics: Photonics, 4(3), Article 034004. https://doi.org/10.1088/2515-7647/ac6c63
@article{Thiele_vom Bruch_Brockmeier_Protte_Hummel_Ricken_Quiring_Lengeling_Herrmann_Eigner_et al._2022, title={Cryogenic electro-optic modulation in titanium in-diffused lithium niobate waveguides}, volume={4}, DOI={10.1088/2515-7647/ac6c63}, number={3034004}, journal={Journal of Physics: Photonics}, publisher={IOP Publishing}, author={Thiele, Frederik and vom Bruch, Felix and Brockmeier, Julian and Protte, Maximilian and Hummel, Thomas and Ricken, Raimund and Quiring, Viktor and Lengeling, Sebastian and Herrmann, Harald and Eigner, Christof and et al.}, year={2022} }
Thiele, Frederik, Felix vom Bruch, Julian Brockmeier, Maximilian Protte, Thomas Hummel, Raimund Ricken, Viktor Quiring, et al. “Cryogenic Electro-Optic Modulation in Titanium in-Diffused Lithium Niobate Waveguides.” Journal of Physics: Photonics 4, no. 3 (2022). https://doi.org/10.1088/2515-7647/ac6c63.
F. Thiele et al., “Cryogenic electro-optic modulation in titanium in-diffused lithium niobate waveguides,” Journal of Physics: Photonics, vol. 4, no. 3, Art. no. 034004, 2022, doi: 10.1088/2515-7647/ac6c63.
Thiele, Frederik, et al. “Cryogenic Electro-Optic Modulation in Titanium in-Diffused Lithium Niobate Waveguides.” Journal of Physics: Photonics, vol. 4, no. 3, 034004, IOP Publishing, 2022, doi:10.1088/2515-7647/ac6c63.

Export

Marked Publications

Open Data LibreCat

Search this title in

Google Scholar