A computer vision-based approach to high density EMG pattern recognition using structural similarity
A. Boschmann, M. Platzner, in: Proc. MyoElectric Controls Symposium (MEC), 2014.
Download
No fulltext has been uploaded.
Conference Paper
| English
Author
Boschmann, Alexander;
Platzner, MarcoLibreCat
Department
Publishing Year
Proceedings Title
Proc. MyoElectric Controls Symposium (MEC)
LibreCat-ID
Cite this
Boschmann A, Platzner M. A computer vision-based approach to high density EMG pattern recognition using structural similarity. In: Proc. MyoElectric Controls Symposium (MEC). ; 2014.
Boschmann, A., & Platzner, M. (2014). A computer vision-based approach to high density EMG pattern recognition using structural similarity. In Proc. MyoElectric Controls Symposium (MEC).
@inproceedings{Boschmann_Platzner_2014, title={A computer vision-based approach to high density EMG pattern recognition using structural similarity}, booktitle={Proc. MyoElectric Controls Symposium (MEC)}, author={Boschmann, Alexander and Platzner, Marco}, year={2014} }
Boschmann, Alexander, and Marco Platzner. “A Computer Vision-Based Approach to High Density EMG Pattern Recognition Using Structural Similarity.” In Proc. MyoElectric Controls Symposium (MEC), 2014.
A. Boschmann and M. Platzner, “A computer vision-based approach to high density EMG pattern recognition using structural similarity,” in Proc. MyoElectric Controls Symposium (MEC), 2014.
Boschmann, Alexander, and Marco Platzner. “A Computer Vision-Based Approach to High Density EMG Pattern Recognition Using Structural Similarity.” Proc. MyoElectric Controls Symposium (MEC), 2014.