Multi-target prediction: a unifying view on problems and methods

W. Waegeman, K. Dembczynski, E. Hüllermeier, Data Mining and Knowledge Discovery 33 (2019) 293–324.

Download
No fulltext has been uploaded.
Journal Article | English
Author
; ;
Abstract
Many problem settings in machine learning are concerned with the simultaneous prediction of multiple target variables of diverse type. Amongst others, such problem settings arise in multivariate regression, multi-label classification, multi-task learning, dyadic prediction, zero-shot learning, network inference, and matrix completion. These subfields of machine learning are typically studied in isolation, without highlighting or exploring important relationships. In this paper, we present a unifying view on what we call multi-target prediction (MTP) problems and methods. First, we formally discuss commonalities and differences between existing MTP problems. To this end, we introduce a general framework that covers the above subfields as special cases. As a second contribution, we provide a structured overview of MTP methods. This is accomplished by identifying a number of key properties, which distinguish such methods and determine their suitability for different types of problems. Finally, we also discuss a few challenges for future research.
Publishing Year
Journal Title
Data Mining and Knowledge Discovery
Volume
33
Issue
2
Page
293-324
ISSN
LibreCat-ID

Cite this

Waegeman W, Dembczynski K, Hüllermeier E. Multi-target prediction: a unifying view on problems and methods. Data Mining and Knowledge Discovery. 2019;33(2):293-324. doi:10.1007/s10618-018-0595-5
Waegeman, W., Dembczynski, K., & Hüllermeier, E. (2019). Multi-target prediction: a unifying view on problems and methods. Data Mining and Knowledge Discovery, 33(2), 293–324. https://doi.org/10.1007/s10618-018-0595-5
@article{Waegeman_Dembczynski_Hüllermeier_2019, title={Multi-target prediction: a unifying view on problems and methods}, volume={33}, DOI={10.1007/s10618-018-0595-5}, number={2}, journal={Data Mining and Knowledge Discovery}, author={Waegeman, Willem and Dembczynski, Krzysztof and Hüllermeier, Eyke}, year={2019}, pages={293–324} }
Waegeman, Willem, Krzysztof Dembczynski, and Eyke Hüllermeier. “Multi-Target Prediction: A Unifying View on Problems and Methods.” Data Mining and Knowledge Discovery 33, no. 2 (2019): 293–324. https://doi.org/10.1007/s10618-018-0595-5.
W. Waegeman, K. Dembczynski, and E. Hüllermeier, “Multi-target prediction: a unifying view on problems and methods,” Data Mining and Knowledge Discovery, vol. 33, no. 2, pp. 293–324, 2019.
Waegeman, Willem, et al. “Multi-Target Prediction: A Unifying View on Problems and Methods.” Data Mining and Knowledge Discovery, vol. 33, no. 2, 2019, pp. 293–324, doi:10.1007/s10618-018-0595-5.

Export

Marked Publications

Open Data LibreCat

Search this title in

Google Scholar