Multi-target prediction: a unifying view on problems and methods

W. Waegeman, K. Dembczynski, E. Hüllermeier, Data Mining and Knowledge Discovery 33 (2019) 293–324.

Download
OA multi-target-prediction.pdf 837.81 KB
Journal Article | English
Author
Waegeman, Willem; Dembczynski, Krzysztof; Hüllermeier, EykeLibreCat
Abstract
Many problem settings in machine learning are concerned with the simultaneous prediction of multiple target variables of diverse type. Amongst others, such problem settings arise in multivariate regression, multi-label classification, multi-task learning, dyadic prediction, zero-shot learning, network inference, and matrix completion. These subfields of machine learning are typically studied in isolation, without highlighting or exploring important relationships. In this paper, we present a unifying view on what we call multi-target prediction (MTP) problems and methods. First, we formally discuss commonalities and differences between existing MTP problems. To this end, we introduce a general framework that covers the above subfields as special cases. As a second contribution, we provide a structured overview of MTP methods. This is accomplished by identifying a number of key properties, which distinguish such methods and determine their suitability for different types of problems. Finally, we also discuss a few challenges for future research.
Publishing Year
Journal Title
Data Mining and Knowledge Discovery
Volume
33
Issue
2
Page
293-324
ISSN
LibreCat-ID

Cite this

Waegeman W, Dembczynski K, Hüllermeier E. Multi-target prediction: a unifying view on problems and methods. Data Mining and Knowledge Discovery. 2019;33(2):293-324. doi:10.1007/s10618-018-0595-5
Waegeman, W., Dembczynski, K., & Hüllermeier, E. (2019). Multi-target prediction: a unifying view on problems and methods. Data Mining and Knowledge Discovery, 33(2), 293–324. https://doi.org/10.1007/s10618-018-0595-5
@article{Waegeman_Dembczynski_Hüllermeier_2019, title={Multi-target prediction: a unifying view on problems and methods}, volume={33}, DOI={10.1007/s10618-018-0595-5}, number={2}, journal={Data Mining and Knowledge Discovery}, author={Waegeman, Willem and Dembczynski, Krzysztof and Hüllermeier, Eyke}, year={2019}, pages={293–324} }
Waegeman, Willem, Krzysztof Dembczynski, and Eyke Hüllermeier. “Multi-Target Prediction: A Unifying View on Problems and Methods.” Data Mining and Knowledge Discovery 33, no. 2 (2019): 293–324. https://doi.org/10.1007/s10618-018-0595-5.
W. Waegeman, K. Dembczynski, and E. Hüllermeier, “Multi-target prediction: a unifying view on problems and methods,” Data Mining and Knowledge Discovery, vol. 33, no. 2, pp. 293–324, 2019.
Waegeman, Willem, et al. “Multi-Target Prediction: A Unifying View on Problems and Methods.” Data Mining and Knowledge Discovery, vol. 33, no. 2, 2019, pp. 293–324, doi:10.1007/s10618-018-0595-5.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Main File(s)
File Name
Access Level
OA Open Access
Last Uploaded
2020-02-28T12:45:26Z


Export

Marked Publications

Open Data LibreCat

Search this title in

Google Scholar