Investigation of long short-term memory networks to temperature prediction for permanent magnet synchronous motors
O. Wallscheid, W. Kirchgässner, J. Böcker, in: 2017 International Joint Conference on Neural Networks (IJCNN), 2017.
Download
No fulltext has been uploaded.
Conference Paper
| Published
| English
Publishing Year
Proceedings Title
2017 International Joint Conference on Neural Networks (IJCNN)
ISBN
LibreCat-ID
Cite this
Wallscheid O, Kirchgässner W, Böcker J. Investigation of long short-term memory networks to temperature prediction for permanent magnet synchronous motors. In: 2017 International Joint Conference on Neural Networks (IJCNN). ; 2017. doi:10.1109/ijcnn.2017.7966088
Wallscheid, O., Kirchgässner, W., & Böcker, J. (2017). Investigation of long short-term memory networks to temperature prediction for permanent magnet synchronous motors. 2017 International Joint Conference on Neural Networks (IJCNN). https://doi.org/10.1109/ijcnn.2017.7966088
@inproceedings{Wallscheid_Kirchgässner_Böcker_2017, title={Investigation of long short-term memory networks to temperature prediction for permanent magnet synchronous motors}, DOI={10.1109/ijcnn.2017.7966088}, booktitle={2017 International Joint Conference on Neural Networks (IJCNN)}, author={Wallscheid, Oliver and Kirchgässner, Wilhelm and Böcker, Joachim}, year={2017} }
Wallscheid, Oliver, Wilhelm Kirchgässner, and Joachim Böcker. “Investigation of Long Short-Term Memory Networks to Temperature Prediction for Permanent Magnet Synchronous Motors.” In 2017 International Joint Conference on Neural Networks (IJCNN), 2017. https://doi.org/10.1109/ijcnn.2017.7966088.
O. Wallscheid, W. Kirchgässner, and J. Böcker, “Investigation of long short-term memory networks to temperature prediction for permanent magnet synchronous motors,” 2017, doi: 10.1109/ijcnn.2017.7966088.
Wallscheid, Oliver, et al. “Investigation of Long Short-Term Memory Networks to Temperature Prediction for Permanent Magnet Synchronous Motors.” 2017 International Joint Conference on Neural Networks (IJCNN), 2017, doi:10.1109/ijcnn.2017.7966088.