Assessment of probabilistic distributed factors influencing renewable energy supply for hotels using Monte-Carlo methods
H. Meschede, H. Dunkelberg, F. Stöhr, R.-H. Peesel, J. Hesselbach, Energy (2017) 86–100.
Download
No fulltext has been uploaded.
Journal Article
| Published
| English
Author
Meschede, HenningLibreCat;
Dunkelberg, Heiko;
Stöhr, Fabian;
Peesel, Ron-Hendrik;
Hesselbach, Jens
Publishing Year
Journal Title
Energy
Page
86-100
ISSN
LibreCat-ID
Cite this
Meschede H, Dunkelberg H, Stöhr F, Peesel R-H, Hesselbach J. Assessment of probabilistic distributed factors influencing renewable energy supply for hotels using Monte-Carlo methods. Energy. Published online 2017:86-100. doi:10.1016/j.energy.2017.03.166
Meschede, H., Dunkelberg, H., Stöhr, F., Peesel, R.-H., & Hesselbach, J. (2017). Assessment of probabilistic distributed factors influencing renewable energy supply for hotels using Monte-Carlo methods. Energy, 86–100. https://doi.org/10.1016/j.energy.2017.03.166
@article{Meschede_Dunkelberg_Stöhr_Peesel_Hesselbach_2017, title={Assessment of probabilistic distributed factors influencing renewable energy supply for hotels using Monte-Carlo methods}, DOI={10.1016/j.energy.2017.03.166}, journal={Energy}, author={Meschede, Henning and Dunkelberg, Heiko and Stöhr, Fabian and Peesel, Ron-Hendrik and Hesselbach, Jens}, year={2017}, pages={86–100} }
Meschede, Henning, Heiko Dunkelberg, Fabian Stöhr, Ron-Hendrik Peesel, and Jens Hesselbach. “Assessment of Probabilistic Distributed Factors Influencing Renewable Energy Supply for Hotels Using Monte-Carlo Methods.” Energy, 2017, 86–100. https://doi.org/10.1016/j.energy.2017.03.166.
H. Meschede, H. Dunkelberg, F. Stöhr, R.-H. Peesel, and J. Hesselbach, “Assessment of probabilistic distributed factors influencing renewable energy supply for hotels using Monte-Carlo methods,” Energy, pp. 86–100, 2017, doi: 10.1016/j.energy.2017.03.166.
Meschede, Henning, et al. “Assessment of Probabilistic Distributed Factors Influencing Renewable Energy Supply for Hotels Using Monte-Carlo Methods.” Energy, 2017, pp. 86–100, doi:10.1016/j.energy.2017.03.166.