Extremely low-energy ARPES of quantum well states in cubic-GaN/AlN and GaAs/AlGaAs heterostructures
M. Hajlaoui, S. Ponzoni, M. Deppe, T. Henksmeier, D.J. As, D. Reuter, T. Zentgraf, G. Springholz, C.M. Schneider, S. Cramm, M. Cinchetti, Scientific Reports 11 (2021).
Download (ext.)
Journal Article
| Published
| English
Author
Hajlaoui, Mahdi;
Ponzoni, Stefano;
Deppe, Michael;
Henksmeier, Tobias;
As, Donat JosefLibreCat ;
Reuter, DirkLibreCat;
Zentgraf, ThomasLibreCat ;
Springholz, Gunther;
Schneider, Claus Michael;
Cramm, Stefan;
Cinchetti, Mirko
Department
Project
Abstract
<jats:title>Abstract</jats:title><jats:p>Quantum well (QW) heterostructures have been extensively used for the realization of a wide range of optical and electronic devices. Exploiting their potential for further improvement and development requires a fundamental understanding of their electronic structure. So far, the most commonly used experimental techniques for this purpose have been all-optical spectroscopy methods that, however, are generally averaging in momentum space. Additional information can be gained by angle-resolved photoelectron spectroscopy (ARPES), which measures the electronic structure with momentum resolution. Here we report on the use of extremely low-energy ARPES (photon energy ~ 7 eV) to increase depth sensitivity and access buried QW states, located at 3 nm and 6 nm below the surface of cubic-GaN/AlN and GaAs/AlGaAs heterostructures, respectively. We find that the QW states in cubic-GaN/AlN can indeed be observed, but not their energy dispersion, because of the high surface roughness. The GaAs/AlGaAs QW states, on the other hand, are buried too deep to be detected by extremely low-energy ARPES. Since the sample surface is much flatter, the ARPES spectra of the GaAs/AlGaAs show distinct features in momentum space, which can be reconducted to the band structure of the topmost surface layer of the QW structure. Our results provide important information about the samples’ properties required to perform extremely low-energy ARPES experiments on electronic states buried in semiconductor heterostructures.</jats:p>
Publishing Year
Journal Title
Scientific Reports
Volume
11
Article Number
19081
ISSN
LibreCat-ID
Cite this
Hajlaoui M, Ponzoni S, Deppe M, et al. Extremely low-energy ARPES of quantum well states in cubic-GaN/AlN and GaAs/AlGaAs heterostructures. Scientific Reports. 2021;11. doi:10.1038/s41598-021-98569-6
Hajlaoui, M., Ponzoni, S., Deppe, M., Henksmeier, T., As, D. J., Reuter, D., Zentgraf, T., Springholz, G., Schneider, C. M., Cramm, S., & Cinchetti, M. (2021). Extremely low-energy ARPES of quantum well states in cubic-GaN/AlN and GaAs/AlGaAs heterostructures. Scientific Reports, 11, Article 19081. https://doi.org/10.1038/s41598-021-98569-6
@article{Hajlaoui_Ponzoni_Deppe_Henksmeier_As_Reuter_Zentgraf_Springholz_Schneider_Cramm_et al._2021, title={Extremely low-energy ARPES of quantum well states in cubic-GaN/AlN and GaAs/AlGaAs heterostructures}, volume={11}, DOI={10.1038/s41598-021-98569-6}, number={19081}, journal={Scientific Reports}, author={Hajlaoui, Mahdi and Ponzoni, Stefano and Deppe, Michael and Henksmeier, Tobias and As, Donat Josef and Reuter, Dirk and Zentgraf, Thomas and Springholz, Gunther and Schneider, Claus Michael and Cramm, Stefan and et al.}, year={2021} }
Hajlaoui, Mahdi, Stefano Ponzoni, Michael Deppe, Tobias Henksmeier, Donat Josef As, Dirk Reuter, Thomas Zentgraf, et al. “Extremely Low-Energy ARPES of Quantum Well States in Cubic-GaN/AlN and GaAs/AlGaAs Heterostructures.” Scientific Reports 11 (2021). https://doi.org/10.1038/s41598-021-98569-6.
M. Hajlaoui et al., “Extremely low-energy ARPES of quantum well states in cubic-GaN/AlN and GaAs/AlGaAs heterostructures,” Scientific Reports, vol. 11, Art. no. 19081, 2021, doi: 10.1038/s41598-021-98569-6.
Hajlaoui, Mahdi, et al. “Extremely Low-Energy ARPES of Quantum Well States in Cubic-GaN/AlN and GaAs/AlGaAs Heterostructures.” Scientific Reports, vol. 11, 19081, 2021, doi:10.1038/s41598-021-98569-6.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Link(s) to Main File(s)
Access Level
Closed Access