Microwave Measurements on n-Disk Systems and Investigation of Branching in correlated Potentials and turbulent Flows
S. Barkhofen, Microwave Measurements on N-Disk Systems and Investigation of Branching in Correlated Potentials and Turbulent Flows, Philipps-Universität Marburg, Marburg, 2013.
Download
No fulltext has been uploaded.
Dissertation
| Published
| English
Author
Supervisor
Kuhl, Ulrich
Department
Abstract
In dieser Arbeit wird die
Wellenausbreitung in drei verschiedenen komplexen Systemen
untersucht. In den ersten beiden geht es um Wellenausbreitung
in zufälligen Potentialen, einmal in einem Mikrowellenaufbau
und einmal in einem akustischen Experiment. Der Fokus liegt
hier auf den nicht-Gaußschen Eigenschaften der Messgrößen.
Das dritte System ist ein typisches Beispiel für
vollchaotische offene Systeme mit fraktalem Repeller. Damit
untersuchen wir die Verbindung zwischen klassischen
periodischen Bahnen und quantenmechanischen Größen. Im ersten
Experiment bauen wir in die Mikrowellenkavität ein Potential
ein, indem wir metallische Streukörper auf der Bodenplatte
zufällig verteilen. In ortsaufgelösten Messungen können wir
die gesamte Wellenfunktion untersuchen und finden starke
Fluktuationen in der Intensität der Wellenfunktion. Besonders
hohe Intensitäten finden sich dort, wo das analoge klassische
System Kaustiken ausbildet. Außerdem wird untersucht, in
welchem Abstand zur Quelle die Verästelungen starker
Intensität anfangen, und ihre Skalierung bezüglich der
Eigenschaften des Potentials getestet. Der vorhergesagte
Exponent von $-2/3$ kann reproduziert werden. Da bei den
hohen Frequenzen, bei denen gemessen wurde, mehrere Moden in
der Kavität offen sind, konnten zusätzlich Effekte durch
Interferenz von Moden und Koppeln zwischen Moden gefunden
werden, die nicht in den theoretischen Modellen
berücksichtigt sind. Erst ein störungstheoretischer Ansatz
für die Helmholtz-Gleichung zeigt für nicht parallele Deckel-
und Bodenplatte, dass es zusätzliche Quellterme für eine Mode
durch die jeweils anderen Moden gibt. Dieser Effekt kann in
dem experimentellen Daten bestätigt werden. Im zweiten
Experiment mit dem akustischen Aufbau wurde der Schall, der
von einer turbulenten Luftströmung verursacht wird, gemessen.
Die Ergebnisse weichen stark von einer Gaußverteilung der
Intensitäten ab, die der zentrale Grenzwertsatz vorhersagt.
In einem zweiten Experiment in einem großen Windkanal wird
zusätzlich ein Ton defnierter Frequenz durch den Luftstrom
gesendet. Die Hoffnung, aus der Modulation dieses Signals
Rück-schlüsse auf die Eigenschaften der Turbulenz ziehen zu
können, wird nicht erfüllt. Aber wieder wird nicht-Gaußsches
Verhalten gefunden. Für den dritten Teil der Arbeit kommen
wieder Mikrowellenexperimente zum Einsatz, um ein weiteres
komplexes System zu erforschen. Das sogenannte
emph{n}-Scheiben System besteht aus emph{n} gleich-artigen
Scheiben, die auf einem gleich-seitigen Polygon in einer
zweidimensionalen Ebene positioniert sind. In solch offenen
Systemen sind die Resonanzen nicht mehr reell, sondern
komplex. Diese aus unseren Messdaten zu extrahieren,
erfordert einen ausgefeilten Algorithmus, die harmonische
Inversion. Die Herausforderungen der Reso-nanzextrahierung
werden angesprochen und Lösungsvorschläge diskutiert. Die
letztendlich erhaltenen Resonanzen werden benutzt, um die
Zählfunktion der Realteile aufzustellen. Ihr Wachstum ist in
führender Ordnung durch die Hausdorff-Dimension gegeben. Die
Verteilung der Imaginärteile wird in Abhängigkeit der Öffnung
des Systems untersucht. Der größte der aus-schließlich
negativen Imaginärteile gibt die spektrale Lücke an. Diese
wird mit den Vorhersagen verglichen, die auf Berechnungen
über die periodischen Bahnen beruhen. Auch für die
Abhängigkeit des Maximums der Verteilung von der Öffnung des
Systems gibt es theoretische Annahmen, die auf ähnlichen
Berechnungen beruht. Diese konnte ebenfalls unterstützt
werden. Zusätzlich werden die experimentellen Resonanzen mit
quantenmechanischen Berechnung verglichen.
In this work we investigate the wave propagation in three different complex systems. In the first two systems we focus on the wave propagation through random potentials, the first one in a microwave and the second one in an acoustic setup. In both systems we focus on the non-Gaussian properties of the measured quantities. The third system is a paradigmatic example of a fully chaotic open system with a fractal repeller. Here the relation of the classical periodic orbits and quantum mechanical quantities is studied. In the first experiment we induce a potential into the microwave cavity by placing randomly distributed metallic scatterers on the bottom plate. Spatially resolved measurements of the full wave function reveal strong intensity fluctuations and a condensation of the wave flow along classical caustics. Additionally the scaling behavior of the branching with respect to the standard deviation of the potential is investigated and the predicted exponent of $-2/3$ is reproduced. As there are several open modes in the cavity due to the high frequency, effects of mode interference and mode coupling are found and explained, which go beyond the theoretical model. Perturbation theory of the Helmholtz equation for non-parallel top and bottom plate reveals extra source terms for the wave function, which are induced by the other open modes. These dynamics are also found in the experimental data. The second experiment deals with an acoustic setup, where the sound of a turbulent air flow is recorded. Here strong deviations from the central limit theorem, which predicts a Gaussian distribution of wave intensities, are observed. In a second experiment performed in a wind tunnel a monochromatic sound wave is sent through the air flow. The hope to learn something about the properties of the turbulence by investigating the modulations of the original sound is not met. But again non-Gaussian behavior is found. In the third part of this thesis another complex system is studied in a microwave setup: The emph{n}-disk system consists of emph{n} equal disks placed on an equilateral polygon in a two dimensional plane. Such an open systems provides complex resonances, which are extracted from our measured spectra via an elaborate algorithm, the harmonic inversion. The challenges of this extraction are discussed in detail and possible solutions for arising problems are suggested. The finally obtained resonances are used for the calculation of the counting function of the real parts, whose growth is predicted by the Hausdorff dimension as leading order. The distributions of the imaginary parts are studied with respect to the opening of the system. The largest (negative) imaginary part defines the spectral gap, which is compared to predictions, which can be calculated by using the periodic orbits of the system. By similar means a suggestions for the development of the maximum of this distribution is tested. Moreover the experimental data is compared to the quantum mechanical calculation of the system.
In this work we investigate the wave propagation in three different complex systems. In the first two systems we focus on the wave propagation through random potentials, the first one in a microwave and the second one in an acoustic setup. In both systems we focus on the non-Gaussian properties of the measured quantities. The third system is a paradigmatic example of a fully chaotic open system with a fractal repeller. Here the relation of the classical periodic orbits and quantum mechanical quantities is studied. In the first experiment we induce a potential into the microwave cavity by placing randomly distributed metallic scatterers on the bottom plate. Spatially resolved measurements of the full wave function reveal strong intensity fluctuations and a condensation of the wave flow along classical caustics. Additionally the scaling behavior of the branching with respect to the standard deviation of the potential is investigated and the predicted exponent of $-2/3$ is reproduced. As there are several open modes in the cavity due to the high frequency, effects of mode interference and mode coupling are found and explained, which go beyond the theoretical model. Perturbation theory of the Helmholtz equation for non-parallel top and bottom plate reveals extra source terms for the wave function, which are induced by the other open modes. These dynamics are also found in the experimental data. The second experiment deals with an acoustic setup, where the sound of a turbulent air flow is recorded. Here strong deviations from the central limit theorem, which predicts a Gaussian distribution of wave intensities, are observed. In a second experiment performed in a wind tunnel a monochromatic sound wave is sent through the air flow. The hope to learn something about the properties of the turbulence by investigating the modulations of the original sound is not met. But again non-Gaussian behavior is found. In the third part of this thesis another complex system is studied in a microwave setup: The emph{n}-disk system consists of emph{n} equal disks placed on an equilateral polygon in a two dimensional plane. Such an open systems provides complex resonances, which are extracted from our measured spectra via an elaborate algorithm, the harmonic inversion. The challenges of this extraction are discussed in detail and possible solutions for arising problems are suggested. The finally obtained resonances are used for the calculation of the counting function of the real parts, whose growth is predicted by the Hausdorff dimension as leading order. The distributions of the imaginary parts are studied with respect to the opening of the system. The largest (negative) imaginary part defines the spectral gap, which is compared to predictions, which can be calculated by using the periodic orbits of the system. By similar means a suggestions for the development of the maximum of this distribution is tested. Moreover the experimental data is compared to the quantum mechanical calculation of the system.
Publishing Year
LibreCat-ID
Cite this
Barkhofen S. Microwave Measurements on N-Disk Systems and Investigation of Branching in Correlated Potentials and Turbulent Flows. Philipps-Universität Marburg; 2013. doi:10.17192/Z2013.0457
Barkhofen, S. (2013). Microwave Measurements on n-Disk Systems and Investigation of Branching in correlated Potentials and turbulent Flows. Philipps-Universität Marburg. https://doi.org/10.17192/Z2013.0457
@book{Barkhofen_2013, place={Marburg}, title={Microwave Measurements on n-Disk Systems and Investigation of Branching in correlated Potentials and turbulent Flows}, DOI={10.17192/Z2013.0457}, publisher={Philipps-Universität Marburg}, author={Barkhofen, Sonja}, year={2013} }
Barkhofen, Sonja. Microwave Measurements on N-Disk Systems and Investigation of Branching in Correlated Potentials and Turbulent Flows. Marburg: Philipps-Universität Marburg, 2013. https://doi.org/10.17192/Z2013.0457.
S. Barkhofen, Microwave Measurements on n-Disk Systems and Investigation of Branching in correlated Potentials and turbulent Flows. Marburg: Philipps-Universität Marburg, 2013.
Barkhofen, Sonja. Microwave Measurements on N-Disk Systems and Investigation of Branching in Correlated Potentials and Turbulent Flows. Philipps-Universität Marburg, 2013, doi:10.17192/Z2013.0457.