Ranking Structured Objects with Graph Neural Networks

C. Damke, E. Hüllermeier, in: C. Soares, L. Torgo (Eds.), Proceedings of The 24th International Conference on Discovery Science (DS 2021), Springer, 2021, pp. 166–180.

Download
No fulltext has been uploaded.
Conference Paper | Published | English
Editor
Soares, Carlos; Torgo, Luis
Abstract
Graph neural networks (GNNs) have been successfully applied in many structured data domains, with applications ranging from molecular property prediction to the analysis of social networks. Motivated by the broad applicability of GNNs, we propose the family of so-called RankGNNs, a combination of neural Learning to Rank (LtR) methods and GNNs. RankGNNs are trained with a set of pair-wise preferences between graphs, suggesting that one of them is preferred over the other. One practical application of this problem is drug screening, where an expert wants to find the most promising molecules in a large collection of drug candidates. We empirically demonstrate that our proposed pair-wise RankGNN approach either significantly outperforms or at least matches the ranking performance of the naive point-wise baseline approach, in which the LtR problem is solved via GNN-based graph regression.
Publishing Year
Proceedings Title
Proceedings of The 24th International Conference on Discovery Science (DS 2021)
Volume
12986
Page
166-180
Conference
24th International Conference on Discovery Science
Conference Location
Halifax, Canada
Conference Date
2021-10-11 – 2021-10-13
LibreCat-ID

Cite this

Damke C, Hüllermeier E. Ranking Structured Objects with Graph Neural Networks. In: Soares C, Torgo L, eds. Proceedings of The 24th International Conference on Discovery Science (DS 2021). Vol 12986. Lecture Notes in Computer Science. Springer; 2021:166-180. doi:10.1007/978-3-030-88942-5
Damke, C., & Hüllermeier, E. (2021). Ranking Structured Objects with Graph Neural Networks. In C. Soares & L. Torgo (Eds.), Proceedings of The 24th International Conference on Discovery Science (DS 2021) (Vol. 12986, pp. 166–180). Springer. https://doi.org/10.1007/978-3-030-88942-5
@inproceedings{Damke_Hüllermeier_2021, series={Lecture Notes in Computer Science}, title={Ranking Structured Objects with Graph Neural Networks}, volume={12986}, DOI={10.1007/978-3-030-88942-5}, booktitle={Proceedings of The 24th International Conference on Discovery Science (DS 2021)}, publisher={Springer}, author={Damke, Clemens and Hüllermeier, Eyke}, editor={Soares, Carlos and Torgo, Luis}, year={2021}, pages={166–180}, collection={Lecture Notes in Computer Science} }
Damke, Clemens, and Eyke Hüllermeier. “Ranking Structured Objects with Graph Neural Networks.” In Proceedings of The 24th International Conference on Discovery Science (DS 2021), edited by Carlos Soares and Luis Torgo, 12986:166–80. Lecture Notes in Computer Science. Springer, 2021. https://doi.org/10.1007/978-3-030-88942-5.
C. Damke and E. Hüllermeier, “Ranking Structured Objects with Graph Neural Networks,” in Proceedings of The 24th International Conference on Discovery Science (DS 2021), Halifax, Canada, 2021, vol. 12986, pp. 166–180, doi: 10.1007/978-3-030-88942-5.
Damke, Clemens, and Eyke Hüllermeier. “Ranking Structured Objects with Graph Neural Networks.” Proceedings of The 24th International Conference on Discovery Science (DS 2021), edited by Carlos Soares and Luis Torgo, vol. 12986, Springer, 2021, pp. 166–80, doi:10.1007/978-3-030-88942-5.

Export

Marked Publications

Open Data LibreCat

Sources

arXiv 2104.08869

Search this title in

Google Scholar
ISBN Search