The Strong Scaling Advantage of FPGAs in HPC for N-body Simulations

J. Menzel, C. Plessl, T. Kenter, ACM Transactions on Reconfigurable Technology and Systems 15 (2021) 1–30.

Journal Article | Published | English
Abstract
N-body methods are one of the essential algorithmic building blocks of high-performance and parallel computing. Previous research has shown promising performance for implementing n-body simulations with pairwise force calculations on FPGAs. However, to avoid challenges with accumulation and memory access patterns, the presented designs calculate each pair of forces twice, along with both force sums of the involved particles. Also, they require large problem instances with hundreds of thousands of particles to reach their respective peak performance, limiting the applicability for strong scaling scenarios. This work addresses both issues by presenting a novel FPGA design that uses each calculated force twice and overlaps data transfers and computations in a way that allows to reach peak performance even for small problem instances, outperforming previous single precision results even in double precision, and scaling linearly over multiple interconnected FPGAs. For a comparison across architectures, we provide an equally optimized CPU reference, which for large problems actually achieves higher peak performance per device, however, given the strong scaling advantages of the FPGA design, in parallel setups with few thousand particles per device, the FPGA platform achieves highest performance and power efficiency.
Publishing Year
Journal Title
ACM Transactions on Reconfigurable Technology and Systems
Volume
15
Issue
1
Page
1-30
LibreCat-ID

Cite this

Menzel J, Plessl C, Kenter T. The Strong Scaling Advantage of FPGAs in HPC for N-body Simulations. ACM Transactions on Reconfigurable Technology and Systems. 2021;15(1):1-30. doi:10.1145/3491235
Menzel, J., Plessl, C., & Kenter, T. (2021). The Strong Scaling Advantage of FPGAs in HPC for N-body Simulations. ACM Transactions on Reconfigurable Technology and Systems, 15(1), 1–30. https://doi.org/10.1145/3491235
@article{Menzel_Plessl_Kenter_2021, title={The Strong Scaling Advantage of FPGAs in HPC for N-body Simulations}, volume={15}, DOI={10.1145/3491235}, number={1}, journal={ACM Transactions on Reconfigurable Technology and Systems}, author={Menzel, Johannes and Plessl, Christian and Kenter, Tobias}, year={2021}, pages={1–30} }
Menzel, Johannes, Christian Plessl, and Tobias Kenter. “The Strong Scaling Advantage of FPGAs in HPC for N-Body Simulations.” ACM Transactions on Reconfigurable Technology and Systems 15, no. 1 (2021): 1–30. https://doi.org/10.1145/3491235.
J. Menzel, C. Plessl, and T. Kenter, “The Strong Scaling Advantage of FPGAs in HPC for N-body Simulations,” ACM Transactions on Reconfigurable Technology and Systems, vol. 15, no. 1, pp. 1–30, 2021, doi: 10.1145/3491235.
Menzel, Johannes, et al. “The Strong Scaling Advantage of FPGAs in HPC for N-Body Simulations.” ACM Transactions on Reconfigurable Technology and Systems, vol. 15, no. 1, 2021, pp. 1–30, doi:10.1145/3491235.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]

Link(s) to Main File(s)
Access Level
Restricted Closed Access

Export

Marked Publications

Open Data LibreCat

Search this title in

Google Scholar