mobile-env: An Open Platform for Reinforcement Learning in Wireless Mobile Networks

S.B. Schneider, S. Werner, R. Khalili, A. Hecker, H. Karl, in: IEEE/IFIP Network Operations and Management Symposium (NOMS), IEEE, 2022.

Download
OA author_version.pdf 223.41 KB
Conference Paper | English
Author
Schneider, Stefan BalthasarLibreCat ; Werner, Stefan; Khalili, Ramin; Hecker, Artur; Karl, HolgerLibreCat
Department
Abstract
Recent reinforcement learning approaches for continuous control in wireless mobile networks have shown impressive results. But due to the lack of open and compatible simulators, authors typically create their own simulation environments for training and evaluation. This is cumbersome and time-consuming for authors and limits reproducibility and comparability, ultimately impeding progress in the field. To this end, we propose mobile-env, a simple and open platform for training, evaluating, and comparing reinforcement learning and conventional approaches for continuous control in mobile wireless networks. mobile-env is lightweight and implements the common OpenAI Gym interface and additional wrappers, which allows connecting virtually any single-agent or multi-agent reinforcement learning framework to the environment. While mobile-env provides sensible default values and can be used out of the box, it also has many configuration options and is easy to extend. We therefore believe mobile-env to be a valuable platform for driving meaningful progress in autonomous coordination of wireless mobile networks.
Publishing Year
Proceedings Title
IEEE/IFIP Network Operations and Management Symposium (NOMS)
Conference
IEEE/IFIP Network Operations and Management Symposium (NOMS)
Conference Location
Budapest
Conference Date
2022-04-25 – 2022-04-29
LibreCat-ID

Cite this

Schneider SB, Werner S, Khalili R, Hecker A, Karl H. mobile-env: An Open Platform for Reinforcement Learning in Wireless Mobile Networks. In: IEEE/IFIP Network Operations and Management Symposium (NOMS). IEEE; 2022.
Schneider, S. B., Werner, S., Khalili, R., Hecker, A., & Karl, H. (2022). mobile-env: An Open Platform for Reinforcement Learning in Wireless Mobile Networks. IEEE/IFIP Network Operations and Management Symposium (NOMS). IEEE/IFIP Network Operations and Management Symposium (NOMS), Budapest.
@inproceedings{Schneider_Werner_Khalili_Hecker_Karl_2022, title={mobile-env: An Open Platform for Reinforcement Learning in Wireless Mobile Networks}, booktitle={IEEE/IFIP Network Operations and Management Symposium (NOMS)}, publisher={IEEE}, author={Schneider, Stefan Balthasar and Werner, Stefan and Khalili, Ramin and Hecker, Artur and Karl, Holger}, year={2022} }
Schneider, Stefan Balthasar, Stefan Werner, Ramin Khalili, Artur Hecker, and Holger Karl. “Mobile-Env: An Open Platform for Reinforcement Learning in Wireless Mobile Networks.” In IEEE/IFIP Network Operations and Management Symposium (NOMS). IEEE, 2022.
S. B. Schneider, S. Werner, R. Khalili, A. Hecker, and H. Karl, “mobile-env: An Open Platform for Reinforcement Learning in Wireless Mobile Networks,” presented at the IEEE/IFIP Network Operations and Management Symposium (NOMS), Budapest, 2022.
Schneider, Stefan Balthasar, et al. “Mobile-Env: An Open Platform for Reinforcement Learning in Wireless Mobile Networks.” IEEE/IFIP Network Operations and Management Symposium (NOMS), IEEE, 2022.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Main File(s)
File Name
Access Level
OA Open Access
Last Uploaded
2022-03-10T18:25:41Z


Export

Marked Publications

Open Data LibreCat

Search this title in

Google Scholar