Spectral Asymptotics for Kinetic Brownian Motion on Surfaces of Constant Curvature

M. Kolb, T. Weich, L.L. Wolf, Annales Henri Poincaré 23 (2022) 1283–1296.

Download
No fulltext has been uploaded.
Journal Article | Published | English
Department
Abstract
<jats:title>Abstract</jats:title><jats:p>The kinetic Brownian motion on the sphere bundle of a Riemannian manifold <jats:inline-formula><jats:alternatives><jats:tex-math>$$\mathbb {M}$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>M</mml:mi> </mml:math></jats:alternatives></jats:inline-formula> is a stochastic process that models a random perturbation of the geodesic flow. If <jats:inline-formula><jats:alternatives><jats:tex-math>$$\mathbb {M}$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>M</mml:mi> </mml:math></jats:alternatives></jats:inline-formula> is an orientable compact constantly curved surface, we show that in the limit of infinitely large perturbation the <jats:inline-formula><jats:alternatives><jats:tex-math>$$L^2$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:math></jats:alternatives></jats:inline-formula>-spectrum of the infinitesimal generator of a time-rescaled version of the process converges to the Laplace spectrum of the base manifold.</jats:p>
Publishing Year
Journal Title
Annales Henri Poincaré
Volume
23
Issue
4
Page
1283-1296
LibreCat-ID

Cite this

Kolb M, Weich T, Wolf LL. Spectral Asymptotics for Kinetic Brownian Motion on Surfaces of Constant Curvature. Annales Henri Poincaré. 2022;23(4):1283-1296. doi:10.1007/s00023-021-01121-5
Kolb, M., Weich, T., & Wolf, L. L. (2022). Spectral Asymptotics for Kinetic Brownian Motion on Surfaces of Constant Curvature. Annales Henri Poincaré, 23(4), 1283–1296. https://doi.org/10.1007/s00023-021-01121-5
@article{Kolb_Weich_Wolf_2022, title={Spectral Asymptotics for Kinetic Brownian Motion on Surfaces of Constant Curvature}, volume={23}, DOI={10.1007/s00023-021-01121-5}, number={4}, journal={Annales Henri Poincaré}, publisher={Springer Science and Business Media LLC}, author={Kolb, Martin and Weich, Tobias and Wolf, Lasse Lennart}, year={2022}, pages={1283–1296} }
Kolb, Martin, Tobias Weich, and Lasse Lennart Wolf. “Spectral Asymptotics for Kinetic Brownian Motion on Surfaces of Constant Curvature.” Annales Henri Poincaré 23, no. 4 (2022): 1283–96. https://doi.org/10.1007/s00023-021-01121-5.
M. Kolb, T. Weich, and L. L. Wolf, “Spectral Asymptotics for Kinetic Brownian Motion on Surfaces of Constant Curvature,” Annales Henri Poincaré, vol. 23, no. 4, pp. 1283–1296, 2022, doi: 10.1007/s00023-021-01121-5.
Kolb, Martin, et al. “Spectral Asymptotics for Kinetic Brownian Motion on Surfaces of Constant Curvature.” Annales Henri Poincaré, vol. 23, no. 4, Springer Science and Business Media LLC, 2022, pp. 1283–96, doi:10.1007/s00023-021-01121-5.

Export

Marked Publications

Open Data LibreCat

Sources

arXiv arXiv:2011.06434

Search this title in

Google Scholar