Spectral correspondences for rank one locally symmetric spaces: the case of exceptional parameters

C. Arends, J. Hilgert, Journal de l’École Polytechnique — Mathématiques 10 (2023) 335–403.

Download
No fulltext has been uploaded.
Journal Article | Published | English
Abstract
In this paper we complete the program of relating the Laplace spectrum for rank one compact locally symmetric spaces with the first band Ruelle-Pollicott resonances of the geodesic flow on its sphere bundle. This program was started by Flaminio and Forni for hyperbolic surfaces, continued by Dyatlov, Faure and Guillarmou for real hyperbolic spaces and by Guillarmou, Hilgert and Weich for general rank one spaces. Except for the case of hyperbolic surfaces a countable set of exceptional spectral parameters always left untreated since the corresponding Poisson transforms are neither injective nor surjective. We use vector valued Poisson transforms to treat also the exceptional spectral parameters. For surfaces the exceptional spectral parameters lead to discrete series representations of $\mathrm{SL}(2,\mathbb R)$. In higher dimensions the situation is more complicated, but can be described completely.
Publishing Year
Journal Title
Journal de l’École polytechnique — Mathématiques
Volume
10
Page
335-403
ISSN
eISSN
LibreCat-ID

Cite this

Arends C, Hilgert J. Spectral correspondences for rank one locally symmetric spaces: the case of exceptional parameters. Journal de l’École polytechnique — Mathématiques. 2023;10:335-403. doi:10.5802/jep.220
Arends, C., & Hilgert, J. (2023). Spectral correspondences for rank one locally symmetric spaces: the case of exceptional parameters. Journal de l’École Polytechnique — Mathématiques, 10, 335–403. https://doi.org/10.5802/jep.220
@article{Arends_Hilgert_2023, title={Spectral correspondences for rank one locally symmetric spaces: the case of exceptional parameters}, volume={10}, DOI={10.5802/jep.220}, journal={Journal de l’École polytechnique — Mathématiques}, author={Arends, Christian and Hilgert, Joachim}, year={2023}, pages={335–403} }
Arends, Christian, and Joachim Hilgert. “Spectral Correspondences for Rank One Locally Symmetric Spaces: The Case of Exceptional Parameters.” Journal de l’École Polytechnique — Mathématiques 10 (2023): 335–403. https://doi.org/10.5802/jep.220.
C. Arends and J. Hilgert, “Spectral correspondences for rank one locally symmetric spaces: the case of exceptional parameters,” Journal de l’École polytechnique — Mathématiques, vol. 10, pp. 335–403, 2023, doi: 10.5802/jep.220.
Arends, Christian, and Joachim Hilgert. “Spectral Correspondences for Rank One Locally Symmetric Spaces: The Case of Exceptional Parameters.” Journal de l’École Polytechnique — Mathématiques, vol. 10, 2023, pp. 335–403, doi:10.5802/jep.220.

Export

Marked Publications

Open Data LibreCat

Sources

arXiv 2112.11073

Search this title in

Google Scholar