Spectral Asymptotics for Kinetic Brownian Motion on Surfaces of Constant Curvature
M. Kolb, T. Weich, L. Wolf, Annales Henri Poincaré 23 (2021) 1283–1296.
Download (ext.)
Journal Article
| Published
| English
Author
Kolb, MartinLibreCat;
Weich, Tobias;
Wolf, Lasse
Department
Abstract
The kinetic Brownian motion on the sphere bundle of a Riemannian manifold M is a stochastic process that models a random perturbation of the geodesic flow. If M is an orientable compact constantly curved surface, we show that in the limit of infinitely large perturbation the L2-spectrum of the infinitesimal generator of a time-rescaled version of the process converges to the Laplace spectrum of the base manifold.
Publishing Year
Journal Title
Annales Henri Poincaré
Volume
23
Issue
4
Page
1283-1296
LibreCat-ID
Cite this
Kolb M, Weich T, Wolf L. Spectral Asymptotics for Kinetic Brownian Motion on Surfaces of Constant Curvature. Annales Henri Poincaré . 2021;23(4):1283-1296.
Kolb, M., Weich, T., & Wolf, L. (2021). Spectral Asymptotics for Kinetic Brownian Motion on Surfaces of Constant Curvature. Annales Henri Poincaré , 23(4), 1283–1296.
@article{Kolb_Weich_Wolf_2021, title={Spectral Asymptotics for Kinetic Brownian Motion on Surfaces of Constant Curvature}, volume={23}, number={4}, journal={Annales Henri Poincaré }, publisher={Springer Science + Business Media}, author={Kolb, Martin and Weich, Tobias and Wolf, Lasse}, year={2021}, pages={1283–1296} }
Kolb, Martin, Tobias Weich, and Lasse Wolf. “Spectral Asymptotics for Kinetic Brownian Motion on Surfaces of Constant Curvature.” Annales Henri Poincaré 23, no. 4 (2021): 1283–96.
M. Kolb, T. Weich, and L. Wolf, “Spectral Asymptotics for Kinetic Brownian Motion on Surfaces of Constant Curvature,” Annales Henri Poincaré , vol. 23, no. 4, pp. 1283–1296, 2021.
Kolb, Martin, et al. “Spectral Asymptotics for Kinetic Brownian Motion on Surfaces of Constant Curvature.” Annales Henri Poincaré , vol. 23, no. 4, Springer Science + Business Media, 2021, pp. 1283–96.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Link(s) to Main File(s)
Access Level
Closed Access
External material:
Publication containing LibreCat record