A Data Driven Modelling Approach for the Strain Rate Dependent 3D Shear Deformation and Failure of Thermoplastic Fibre Reinforced Composites: Experimental Characterisation and Deriving Modelling Parameters

J. Gerritzen, A. Hornig, B. Gröger, M. Gude, Journal of Composites Science 6 (2022).

Journal Article | Published | English
Author
Gerritzen, Johannes; Hornig, Andreas; Gröger, Benjamin; Gude, Maik
Abstract
<jats:p>The 3D shear deformation and failure behaviour of a glass fibre reinforced polypropylene in a shear strain rate range of γ˙=2.2×10−4 to 3.4 1s is investigated. An Iosipescu testing setup on a servo-hydraulic high speed testing unit is used to experimentally characterise the in-plane and out-of-plane behaviour utilising three specimen configurations (12-, 13- and 31-direction). The experimental procedure as well as the testing results are presented and discussed. The measured shear stress–shear strain relations indicate a highly nonlinear behaviour and a distinct rate dependency. Two methods are investigated to derive according material characteristics: a classical engineering approach based on moduli and strengths and a data driven approach based on the curve progression. In all cases a Johnson–Cook based formulation is used to describe rate dependency. The analysis methodologies as well as the derived model parameters are described and discussed in detail. It is shown that a phenomenologically enhanced regression can be used to obtain material characteristics for a generalising constitutive model based on the data driven approach.</jats:p>
Publishing Year
Journal Title
Journal of Composites Science
Volume
6
Issue
10
Article Number
318
ISSN
LibreCat-ID

Cite this

Gerritzen J, Hornig A, Gröger B, Gude M. A Data Driven Modelling Approach for the Strain Rate Dependent 3D Shear Deformation and Failure of Thermoplastic Fibre Reinforced Composites: Experimental Characterisation and Deriving Modelling Parameters. Journal of Composites Science. 2022;6(10). doi:10.3390/jcs6100318
Gerritzen, J., Hornig, A., Gröger, B., & Gude, M. (2022). A Data Driven Modelling Approach for the Strain Rate Dependent 3D Shear Deformation and Failure of Thermoplastic Fibre Reinforced Composites: Experimental Characterisation and Deriving Modelling Parameters. Journal of Composites Science, 6(10), Article 318. https://doi.org/10.3390/jcs6100318
@article{Gerritzen_Hornig_Gröger_Gude_2022, title={A Data Driven Modelling Approach for the Strain Rate Dependent 3D Shear Deformation and Failure of Thermoplastic Fibre Reinforced Composites: Experimental Characterisation and Deriving Modelling Parameters}, volume={6}, DOI={10.3390/jcs6100318}, number={10318}, journal={Journal of Composites Science}, publisher={MDPI AG}, author={Gerritzen, Johannes and Hornig, Andreas and Gröger, Benjamin and Gude, Maik}, year={2022} }
Gerritzen, Johannes, Andreas Hornig, Benjamin Gröger, and Maik Gude. “A Data Driven Modelling Approach for the Strain Rate Dependent 3D Shear Deformation and Failure of Thermoplastic Fibre Reinforced Composites: Experimental Characterisation and Deriving Modelling Parameters.” Journal of Composites Science 6, no. 10 (2022). https://doi.org/10.3390/jcs6100318.
J. Gerritzen, A. Hornig, B. Gröger, and M. Gude, “A Data Driven Modelling Approach for the Strain Rate Dependent 3D Shear Deformation and Failure of Thermoplastic Fibre Reinforced Composites: Experimental Characterisation and Deriving Modelling Parameters,” Journal of Composites Science, vol. 6, no. 10, Art. no. 318, 2022, doi: 10.3390/jcs6100318.
Gerritzen, Johannes, et al. “A Data Driven Modelling Approach for the Strain Rate Dependent 3D Shear Deformation and Failure of Thermoplastic Fibre Reinforced Composites: Experimental Characterisation and Deriving Modelling Parameters.” Journal of Composites Science, vol. 6, no. 10, 318, MDPI AG, 2022, doi:10.3390/jcs6100318.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]

Link(s) to Main File(s)
Access Level
Restricted Closed Access

Export

Marked Publications

Open Data LibreCat

Search this title in

Google Scholar