Smoothing operators for vector-valued functions and extension operators

H. Glöckner, ArXiv:2006.00254 (2020).

Download
No fulltext has been uploaded.
Preprint | English
Abstract
For suitable finite-dimensional smooth manifolds M (possibly with various kinds of boundary or corners), locally convex topological vector spaces F and non-negative integers k, we construct continuous linear operators S_n from the space of F-valued k times continuously differentiable functions on M to the corresponding space of smooth functions such that S_n(f) converges to f in C^k(M,F) as n tends to infinity, uniformly for f in compact subsets of C^k(M,F). We also study the existence of continuous linear right inverses for restriction maps from C^k(M,F) to C^k(L,F) if L is a closed subset of M, endowed with a C^k-manifold structure turning the inclusion map from L to M into a C^k-map. Moreover, we construct continuous linear right inverses for restriction operators between spaces of sections in vector bundles in many situations, and smooth local right inverses for restriction operators between manifolds of mappings. We also obtain smoothing results for sections in fibre bundles.
Publishing Year
Journal Title
arXiv:2006.00254
LibreCat-ID

Cite this

Glöckner H. Smoothing operators for vector-valued functions and extension operators. arXiv:200600254. Published online 2020.
Glöckner, H. (2020). Smoothing operators for vector-valued functions and extension operators. In arXiv:2006.00254.
@article{Glöckner_2020, title={Smoothing operators for vector-valued functions and extension operators}, journal={arXiv:2006.00254}, author={Glöckner, Helge}, year={2020} }
Glöckner, Helge. “Smoothing Operators for Vector-Valued Functions and Extension Operators.” ArXiv:2006.00254, 2020.
H. Glöckner, “Smoothing operators for vector-valued functions and extension operators,” arXiv:2006.00254. 2020.
Glöckner, Helge. “Smoothing Operators for Vector-Valued Functions and Extension Operators.” ArXiv:2006.00254, 2020.

Export

Marked Publications

Open Data LibreCat

Sources

arXiv 2006.00254

Search this title in

Google Scholar