Imaginary multiquadratic number fields with class group of exponent $3$ and $5$

J. Klüners, T. Komatsu, Mathematics of Computation 90 (2021) 1483–1497.

Download
No fulltext has been uploaded.
Journal Article | Published | English
Author
Abstract
In this paper we obtain a complete list of imaginary n-quadratic fields with class groups of exponent 3 and 5 under ERH for every positive integer n where an n-quadratic field is a number field of degree 2ⁿ represented as the composite of n quadratic fields.
Publishing Year
Journal Title
Mathematics of Computation
Volume
90
Issue
329
Page
1483-1497
LibreCat-ID

Cite this

Klüners J, Komatsu T. Imaginary multiquadratic number fields with class group of exponent $3$ and $5$. Mathematics of Computation. 2021;90(329):1483-1497. doi:10.1090/mcom/3609
Klüners, J., & Komatsu, T. (2021). Imaginary multiquadratic number fields with class group of exponent $3$ and $5$. Mathematics of Computation, 90(329), 1483–1497. https://doi.org/10.1090/mcom/3609
@article{Klüners_Komatsu_2021, title={Imaginary multiquadratic number fields with class group of exponent $3$ and $5$}, volume={90}, DOI={10.1090/mcom/3609}, number={329}, journal={Mathematics of Computation}, publisher={American Mathematical Society (AMS)}, author={Klüners, Jürgen and Komatsu, Toru}, year={2021}, pages={1483–1497} }
Klüners, Jürgen, and Toru Komatsu. “Imaginary Multiquadratic Number Fields with Class Group of Exponent $3$ and $5$.” Mathematics of Computation 90, no. 329 (2021): 1483–97. https://doi.org/10.1090/mcom/3609.
J. Klüners and T. Komatsu, “Imaginary multiquadratic number fields with class group of exponent $3$ and $5$,” Mathematics of Computation, vol. 90, no. 329, pp. 1483–1497, 2021, doi: 10.1090/mcom/3609.
Klüners, Jürgen, and Toru Komatsu. “Imaginary Multiquadratic Number Fields with Class Group of Exponent $3$ and $5$.” Mathematics of Computation, vol. 90, no. 329, American Mathematical Society (AMS), 2021, pp. 1483–97, doi:10.1090/mcom/3609.

Export

Marked Publications

Open Data LibreCat

Sources

arXiv 2004.03308v2

Search this title in

Google Scholar