Imaginary quadratic number fields with class groups of small exponent
A.-S. Elsenhans, J. Klüners, F. Nicolae, Acta Arithmetica 193 (2020) 217–233.
Download
No fulltext has been uploaded.
Journal Article
| Published
| English
Author
Elsenhans, Andreas-Stephan;
Klüners, JürgenLibreCat;
Nicolae, Florin
Department
Abstract
Let D<0 be a fundamental discriminant and denote by E(D) the exponent of the ideal class group Cl(D) of K=ℚ(√D). Under the assumption that no Siegel zeros exist we compute all such D with E(D) dividing 8. We compute all D with |D| ≤ 3.1⋅10²⁰ such that E(D) ≤ 8.
Keywords
Publishing Year
Journal Title
Acta Arithmetica
Volume
193
Issue
3
Page
217-233
LibreCat-ID
Cite this
Elsenhans A-S, Klüners J, Nicolae F. Imaginary quadratic number fields with class groups of small exponent. Acta Arithmetica. 2020;193(3):217-233. doi:10.4064/aa180220-20-3
Elsenhans, A.-S., Klüners, J., & Nicolae, F. (2020). Imaginary quadratic number fields with class groups of small exponent. Acta Arithmetica, 193(3), 217–233. https://doi.org/10.4064/aa180220-20-3
@article{Elsenhans_Klüners_Nicolae_2020, title={Imaginary quadratic number fields with class groups of small exponent}, volume={193}, DOI={10.4064/aa180220-20-3}, number={3}, journal={Acta Arithmetica}, publisher={Institute of Mathematics, Polish Academy of Sciences}, author={Elsenhans, Andreas-Stephan and Klüners, Jürgen and Nicolae, Florin}, year={2020}, pages={217–233} }
Elsenhans, Andreas-Stephan, Jürgen Klüners, and Florin Nicolae. “Imaginary Quadratic Number Fields with Class Groups of Small Exponent.” Acta Arithmetica 193, no. 3 (2020): 217–33. https://doi.org/10.4064/aa180220-20-3.
A.-S. Elsenhans, J. Klüners, and F. Nicolae, “Imaginary quadratic number fields with class groups of small exponent,” Acta Arithmetica, vol. 193, no. 3, pp. 217–233, 2020, doi: 10.4064/aa180220-20-3.
Elsenhans, Andreas-Stephan, et al. “Imaginary Quadratic Number Fields with Class Groups of Small Exponent.” Acta Arithmetica, vol. 193, no. 3, Institute of Mathematics, Polish Academy of Sciences, 2020, pp. 217–33, doi:10.4064/aa180220-20-3.