On the 4-rank of class groups of quadratic number fields
É. Fouvry, J. Klüners, Inventiones Mathematicae 167 (2006) 455–513.
Download
No fulltext has been uploaded.
Journal Article
| Published
| English
Author
Fouvry, Étienne;
Klüners, JürgenLibreCat
Department
Abstract
We prove that the 4-rank of class groups of quadratic number fields behaves as predicted in an extension due to Gerth of the Cohen–Lenstra heuristics.
Keywords
Publishing Year
Journal Title
Inventiones mathematicae
Volume
167
Issue
3
Page
455-513
LibreCat-ID
Cite this
Fouvry É, Klüners J. On the 4-rank of class groups of quadratic number fields. Inventiones mathematicae. 2006;167(3):455-513. doi:10.1007/s00222-006-0021-2
Fouvry, É., & Klüners, J. (2006). On the 4-rank of class groups of quadratic number fields. Inventiones Mathematicae, 167(3), 455–513. https://doi.org/10.1007/s00222-006-0021-2
@article{Fouvry_Klüners_2006, title={On the 4-rank of class groups of quadratic number fields}, volume={167}, DOI={10.1007/s00222-006-0021-2}, number={3}, journal={Inventiones mathematicae}, publisher={Springer Science and Business Media LLC}, author={Fouvry, Étienne and Klüners, Jürgen}, year={2006}, pages={455–513} }
Fouvry, Étienne, and Jürgen Klüners. “On the 4-Rank of Class Groups of Quadratic Number Fields.” Inventiones Mathematicae 167, no. 3 (2006): 455–513. https://doi.org/10.1007/s00222-006-0021-2.
É. Fouvry and J. Klüners, “On the 4-rank of class groups of quadratic number fields,” Inventiones mathematicae, vol. 167, no. 3, pp. 455–513, 2006, doi: 10.1007/s00222-006-0021-2.
Fouvry, Étienne, and Jürgen Klüners. “On the 4-Rank of Class Groups of Quadratic Number Fields.” Inventiones Mathematicae, vol. 167, no. 3, Springer Science and Business Media LLC, 2006, pp. 455–513, doi:10.1007/s00222-006-0021-2.
External material:
Confirmation Letter