On the 4-rank of class groups of quadratic number fields

É. Fouvry, J. Klüners, Inventiones Mathematicae 167 (2006) 455–513.

Download
No fulltext has been uploaded.
Journal Article | Published | English
Author
Fouvry, Étienne; Klüners, JürgenLibreCat
Abstract
We prove that the 4-rank of class groups of quadratic number fields behaves as predicted in an extension due to Gerth of the Cohen–Lenstra heuristics.
Publishing Year
Journal Title
Inventiones mathematicae
Volume
167
Issue
3
Page
455-513
LibreCat-ID

Cite this

Fouvry É, Klüners J. On the 4-rank of class groups of quadratic number fields. Inventiones mathematicae. 2006;167(3):455-513. doi:10.1007/s00222-006-0021-2
Fouvry, É., & Klüners, J. (2006). On the 4-rank of class groups of quadratic number fields. Inventiones Mathematicae, 167(3), 455–513. https://doi.org/10.1007/s00222-006-0021-2
@article{Fouvry_Klüners_2006, title={On the 4-rank of class groups of quadratic number fields}, volume={167}, DOI={10.1007/s00222-006-0021-2}, number={3}, journal={Inventiones mathematicae}, publisher={Springer Science and Business Media LLC}, author={Fouvry, Étienne and Klüners, Jürgen}, year={2006}, pages={455–513} }
Fouvry, Étienne, and Jürgen Klüners. “On the 4-Rank of Class Groups of Quadratic Number Fields.” Inventiones Mathematicae 167, no. 3 (2006): 455–513. https://doi.org/10.1007/s00222-006-0021-2.
É. Fouvry and J. Klüners, “On the 4-rank of class groups of quadratic number fields,” Inventiones mathematicae, vol. 167, no. 3, pp. 455–513, 2006, doi: 10.1007/s00222-006-0021-2.
Fouvry, Étienne, and Jürgen Klüners. “On the 4-Rank of Class Groups of Quadratic Number Fields.” Inventiones Mathematicae, vol. 167, no. 3, Springer Science and Business Media LLC, 2006, pp. 455–513, doi:10.1007/s00222-006-0021-2.

Export

Marked Publications

Open Data LibreCat

Search this title in

Google Scholar