Quaternary quadratic lattices over number fields
M. Kirschmer, G. Nebe, International Journal of Number Theory 15 (2019) 309–325.
Download
No fulltext has been uploaded.
Journal Article
| Published
| English
Author
Kirschmer, MarkusLibreCat;
Nebe, Gabriele
Department
Abstract
We relate proper isometry classes of maximal lattices in a totally definite quaternary quadratic space (V,q) with trivial discriminant to certain equivalence classes of ideals in the quaternion algebra representing the Clifford invariant of (V,q). This yields a good algorithm to enumerate a system of representatives of proper isometry classes of lattices in genera of maximal lattices in (V,q).
Keywords
Publishing Year
Journal Title
International Journal of Number Theory
Volume
15
Issue
02
Page
309-325
LibreCat-ID
Cite this
Kirschmer M, Nebe G. Quaternary quadratic lattices over number fields. International Journal of Number Theory. 2019;15(02):309-325. doi:10.1142/s1793042119500131
Kirschmer, M., & Nebe, G. (2019). Quaternary quadratic lattices over number fields. International Journal of Number Theory, 15(02), 309–325. https://doi.org/10.1142/s1793042119500131
@article{Kirschmer_Nebe_2019, title={Quaternary quadratic lattices over number fields}, volume={15}, DOI={10.1142/s1793042119500131}, number={02}, journal={International Journal of Number Theory}, publisher={World Scientific Pub Co Pte Lt}, author={Kirschmer, Markus and Nebe, Gabriele}, year={2019}, pages={309–325} }
Kirschmer, Markus, and Gabriele Nebe. “Quaternary Quadratic Lattices over Number Fields.” International Journal of Number Theory 15, no. 02 (2019): 309–25. https://doi.org/10.1142/s1793042119500131.
M. Kirschmer and G. Nebe, “Quaternary quadratic lattices over number fields,” International Journal of Number Theory, vol. 15, no. 02, pp. 309–325, 2019, doi: 10.1142/s1793042119500131.
Kirschmer, Markus, and Gabriele Nebe. “Quaternary Quadratic Lattices over Number Fields.” International Journal of Number Theory, vol. 15, no. 02, World Scientific Pub Co Pte Lt, 2019, pp. 309–25, doi:10.1142/s1793042119500131.