A unifying approach toward boundedness in Keller-Segel type cross-diffusion systems via conditional $L^\infty$ estimates for taxis gradients.
M. Winkler, Mathematische Nachrichten 295 (2022) 1840–1862.
Download
No fulltext has been uploaded.
Journal Article
| English
Author
Department
Publishing Year
Journal Title
Mathematische Nachrichten
Volume
295
Page
1840-1862
LibreCat-ID
Cite this
Winkler M. A unifying approach toward boundedness in Keller-Segel type cross-diffusion systems via conditional $L^\infty$ estimates for taxis gradients. Mathematische Nachrichten. 2022;295:1840-1862.
Winkler, M. (2022). A unifying approach toward boundedness in Keller-Segel type cross-diffusion systems via conditional $L^\infty$ estimates for taxis gradients. Mathematische Nachrichten, 295, 1840–1862.
@article{Winkler_2022, title={A unifying approach toward boundedness in Keller-Segel type cross-diffusion systems via conditional $L^\infty$ estimates for taxis gradients.}, volume={295}, journal={Mathematische Nachrichten}, author={Winkler, Michael}, year={2022}, pages={1840–1862} }
Winkler, Michael. “A Unifying Approach toward Boundedness in Keller-Segel Type Cross-Diffusion Systems via Conditional $L^\infty$ Estimates for Taxis Gradients.” Mathematische Nachrichten 295 (2022): 1840–62.
M. Winkler, “A unifying approach toward boundedness in Keller-Segel type cross-diffusion systems via conditional $L^\infty$ estimates for taxis gradients.,” Mathematische Nachrichten, vol. 295, pp. 1840–1862, 2022.
Winkler, Michael. “A Unifying Approach toward Boundedness in Keller-Segel Type Cross-Diffusion Systems via Conditional $L^\infty$ Estimates for Taxis Gradients.” Mathematische Nachrichten, vol. 295, 2022, pp. 1840–62.