Error bounds for kernel-based approximations of the Koopman operator

F. Philipp, M. Schaller, K. Worthmann, S. Peitz, F. Nüske, Applied and Computational Harmonic Analysis 71 (2024).

Journal Article | Published | English
Author
Philipp, Friedrich; Schaller, Manuel; Worthmann, Karl; Peitz, SebastianLibreCat ; Nüske, Feliks
Abstract
We consider the data-driven approximation of the Koopman operator for stochastic differential equations on reproducing kernel Hilbert spaces (RKHS). Our focus is on the estimation error if the data are collected from long-term ergodic simulations. We derive both an exact expression for the variance of the kernel cross-covariance operator, measured in the Hilbert-Schmidt norm, and probabilistic bounds for the finite-data estimation error. Moreover, we derive a bound on the prediction error of observables in the RKHS using a finite Mercer series expansion. Further, assuming Koopman-invariance of the RKHS, we provide bounds on the full approximation error. Numerical experiments using the Ornstein-Uhlenbeck process illustrate our results.
Publishing Year
Journal Title
Applied and Computational Harmonic Analysis
Volume
71
Article Number
101657
LibreCat-ID

Cite this

Philipp F, Schaller M, Worthmann K, Peitz S, Nüske F. Error bounds for kernel-based approximations of the Koopman operator. Applied and Computational Harmonic Analysis . 2024;71. doi:10.1016/j.acha.2024.101657
Philipp, F., Schaller, M., Worthmann, K., Peitz, S., & Nüske, F. (2024). Error bounds for kernel-based approximations of the Koopman operator. Applied and Computational Harmonic Analysis , 71, Article 101657. https://doi.org/10.1016/j.acha.2024.101657
@article{Philipp_Schaller_Worthmann_Peitz_Nüske_2024, title={Error bounds for kernel-based approximations of the Koopman operator}, volume={71}, DOI={10.1016/j.acha.2024.101657}, number={101657}, journal={Applied and Computational Harmonic Analysis }, publisher={Springer }, author={Philipp, Friedrich and Schaller, Manuel and Worthmann, Karl and Peitz, Sebastian and Nüske, Feliks}, year={2024} }
Philipp, Friedrich, Manuel Schaller, Karl Worthmann, Sebastian Peitz, and Feliks Nüske. “Error Bounds for Kernel-Based Approximations of the Koopman Operator.” Applied and Computational Harmonic Analysis 71 (2024). https://doi.org/10.1016/j.acha.2024.101657.
F. Philipp, M. Schaller, K. Worthmann, S. Peitz, and F. Nüske, “Error bounds for kernel-based approximations of the Koopman operator,” Applied and Computational Harmonic Analysis , vol. 71, Art. no. 101657, 2024, doi: 10.1016/j.acha.2024.101657.
Philipp, Friedrich, et al. “Error Bounds for Kernel-Based Approximations of the Koopman Operator.” Applied and Computational Harmonic Analysis , vol. 71, 101657, Springer , 2024, doi:10.1016/j.acha.2024.101657.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]

Link(s) to Main File(s)
Access Level
Restricted Closed Access

Export

Marked Publications

Open Data LibreCat

Sources

arXiv 2301.08637

Search this title in

Google Scholar