Integral representation and sharp asymptotic results for some Heckman-Opdam hypergeometric functions of type BC
M. Rösler, M. Voit, Transactions of the American Mathematical Society 368 (2016) 6005–6032.
Download
No fulltext has been uploaded.
Journal Article
| Published
| English
Author
Rösler, MargitLibreCat;
Voit, Michael
Department
Publishing Year
Journal Title
Transactions of the American Mathematical Society
Volume
368
Issue
8
Page
6005-6032
ISSN
LibreCat-ID
Cite this
Rösler M, Voit M. Integral representation and sharp asymptotic results for some Heckman-Opdam hypergeometric functions of type BC. Transactions of the American Mathematical Society. 2016;368(8):6005-6032. doi:10.48550/ARXIV.1402.5793
Rösler, M., & Voit, M. (2016). Integral representation and sharp asymptotic results for some Heckman-Opdam hypergeometric functions of type BC. Transactions of the American Mathematical Society, 368(8), 6005–6032. https://doi.org/10.48550/ARXIV.1402.5793
@article{Rösler_Voit_2016, title={Integral representation and sharp asymptotic results for some Heckman-Opdam hypergeometric functions of type BC}, volume={368}, DOI={10.48550/ARXIV.1402.5793}, number={8}, journal={Transactions of the American Mathematical Society}, publisher={ American Mathematical Society}, author={Rösler, Margit and Voit, Michael}, year={2016}, pages={6005–6032} }
Rösler, Margit, and Michael Voit. “Integral Representation and Sharp Asymptotic Results for Some Heckman-Opdam Hypergeometric Functions of Type BC.” Transactions of the American Mathematical Society 368, no. 8 (2016): 6005–32. https://doi.org/10.48550/ARXIV.1402.5793.
M. Rösler and M. Voit, “Integral representation and sharp asymptotic results for some Heckman-Opdam hypergeometric functions of type BC,” Transactions of the American Mathematical Society, vol. 368, no. 8, pp. 6005–6032, 2016, doi: 10.48550/ARXIV.1402.5793.
Rösler, Margit, and Michael Voit. “Integral Representation and Sharp Asymptotic Results for Some Heckman-Opdam Hypergeometric Functions of Type BC.” Transactions of the American Mathematical Society, vol. 368, no. 8, American Mathematical Society, 2016, pp. 6005–32, doi:10.48550/ARXIV.1402.5793.