Elementary symmetric polynomials and martingales for Heckman-Opdam processes
M. Rösler, M. Voit, Contemporary Mathematics (2022) 243–262.
Download
No fulltext has been uploaded.
Journal Article
| Published
| English
Author
Rösler, MargitLibreCat;
Voit, Michael
Department
Abstract
We consider the generators $L_k$ of Heckman-Opdam diffusion processes in the compact and non-compact case in $N$ dimensions for root systems of type $A$ and $B$, with a multiplicity function of the form $k=κk_0$ with some fixed value $k_0$ and a varying constant $κ\in\,[0,\infty[$. Using elementary symmetric functions, we present polynomials which are simultaneous eigenfunctions of the $L_k$ for all $κ\in\,]0,\infty[$. This leads to martingales associated with the Heckman-Opdam diffusions $ (X_{t,1},\ldots,X_{t,N})_{t\ge0}$. As our results extend to the freezing case $κ=\infty$ with a deterministic limit after some renormalization, we find formulas for the expectations $\mathbb E(\prod_{j=1}^N(y-X_{t,j})),$ $y\in\mathbb C$.
Publishing Year
Journal Title
Contemporary Mathematics
Issue
780
Page
243-262
Conference
Hypergeometry, integrability and Lie theory
LibreCat-ID
Cite this
Rösler M, Voit M. Elementary symmetric polynomials and martingales for Heckman-Opdam processes. Contemporary Mathematics. 2022;(780):243-262. doi:10.48550/ARXIV.2108.03228
Rösler, M., & Voit, M. (2022). Elementary symmetric polynomials and martingales for Heckman-Opdam processes. Contemporary Mathematics, 780, 243–262. https://doi.org/10.48550/ARXIV.2108.03228
@article{Rösler_Voit_2022, title={Elementary symmetric polynomials and martingales for Heckman-Opdam processes}, DOI={10.48550/ARXIV.2108.03228}, number={780}, journal={Contemporary Mathematics}, author={Rösler, Margit and Voit, Michael}, year={2022}, pages={243–262} }
Rösler, Margit, and Michael Voit. “Elementary Symmetric Polynomials and Martingales for Heckman-Opdam Processes.” Contemporary Mathematics, no. 780 (2022): 243–62. https://doi.org/10.48550/ARXIV.2108.03228.
M. Rösler and M. Voit, “Elementary symmetric polynomials and martingales for Heckman-Opdam processes,” Contemporary Mathematics, no. 780, pp. 243–262, 2022, doi: 10.48550/ARXIV.2108.03228.
Rösler, Margit, and Michael Voit. “Elementary Symmetric Polynomials and Martingales for Heckman-Opdam Processes.” Contemporary Mathematics, no. 780, 2022, pp. 243–62, doi:10.48550/ARXIV.2108.03228.