The influence of motor tasks and cut-off parameter selection on artifact subspace reconstruction in EEG recordings

P. Anders, H.M. Müller, N. Skjæret-Maroni, B. Vereijken, J. Baumeister, Medical & Biological Engineering & Computing 58 (2020) 2673–2683.

Download
No fulltext has been uploaded.
Journal Article | Published | English
Author
Anders, Phillipp; Müller, Helen MarthaLibreCat; Skjæret-Maroni, Nina; Vereijken, Beatrix; Baumeister, JochenLibreCat
Abstract
Advances in EEG filtering algorithms enable analysis of EEG recorded during motor tasks. Although methods such as artifact subspace reconstruction (ASR) can remove transient artifacts automatically, there is virtually no knowledge about how the vigor of bodily movements affects ASRs performance and optimal cut-off parameter selection process. We compared the ratios of removed and reconstructed EEG recorded during a cognitive task, single-leg stance, and fast walking using ASR with 10 cut-off parameters versus visual inspection. Furthermore, we used the repeatability and dipolarity of independent components to assess their quality and an automatic classification tool to assess the number of brain-related independent components. The cut-off parameter equivalent to the ratio of EEG removed in manual cleaning was strictest for the walking task. The quality index of independent components, calculated using RELICA, reached a maximum plateau for cut-off parameters of 10 and higher across all tasks while dipolarity was largely unaffected. The number of independent components within each task remained constant, regardless of the cut-off parameter used. Surprisingly, ASR performed better in motor tasks compared with non-movement tasks. The quality index seemed to be more sensitive to changes induced by ASR compared to dipolarity. There was no benefit of using cut-off parameters less than 10.</jats:p>
Publishing Year
Journal Title
Medical & Biological Engineering & Computing
Volume
58
Issue
11
Page
2673-2683
LibreCat-ID

Cite this

Anders P, Müller HM, Skjæret-Maroni N, Vereijken B, Baumeister J. The influence of motor tasks and cut-off parameter selection on artifact subspace reconstruction in EEG recordings. Medical & Biological Engineering & Computing. 2020;58(11):2673-2683. doi:10.1007/s11517-020-02252-3
Anders, P., Müller, H. M., Skjæret-Maroni, N., Vereijken, B., & Baumeister, J. (2020). The influence of motor tasks and cut-off parameter selection on artifact subspace reconstruction in EEG recordings. Medical & Biological Engineering & Computing, 58(11), 2673–2683. https://doi.org/10.1007/s11517-020-02252-3
@article{Anders_Müller_Skjæret-Maroni_Vereijken_Baumeister_2020, title={The influence of motor tasks and cut-off parameter selection on artifact subspace reconstruction in EEG recordings}, volume={58}, DOI={10.1007/s11517-020-02252-3}, number={11}, journal={Medical & Biological Engineering & Computing}, publisher={Springer Science and Business Media LLC}, author={Anders, Phillipp and Müller, Helen Martha and Skjæret-Maroni, Nina and Vereijken, Beatrix and Baumeister, Jochen}, year={2020}, pages={2673–2683} }
Anders, Phillipp, Helen Martha Müller, Nina Skjæret-Maroni, Beatrix Vereijken, and Jochen Baumeister. “The Influence of Motor Tasks and Cut-off Parameter Selection on Artifact Subspace Reconstruction in EEG Recordings.” Medical & Biological Engineering & Computing 58, no. 11 (2020): 2673–83. https://doi.org/10.1007/s11517-020-02252-3.
P. Anders, H. M. Müller, N. Skjæret-Maroni, B. Vereijken, and J. Baumeister, “The influence of motor tasks and cut-off parameter selection on artifact subspace reconstruction in EEG recordings,” Medical & Biological Engineering & Computing, vol. 58, no. 11, pp. 2673–2683, 2020, doi: 10.1007/s11517-020-02252-3.
Anders, Phillipp, et al. “The Influence of Motor Tasks and Cut-off Parameter Selection on Artifact Subspace Reconstruction in EEG Recordings.” Medical & Biological Engineering & Computing, vol. 58, no. 11, Springer Science and Business Media LLC, 2020, pp. 2673–83, doi:10.1007/s11517-020-02252-3.

Export

Marked Publications

Open Data LibreCat

Search this title in

Google Scholar