An Efficient Optical Method to Detect Phase Transitions in Liquid Crystals
J. Strauß, A. Hoischen, H.-S. Kitzerow, Molecular Crystals and Liquid Crystals 439 (2007) 281/[2147]-291/[2157].
Download
No fulltext has been uploaded.
Journal Article
| Published
| English
Author
Strauß, Jochen;
Hoischen, Andreas;
Kitzerow, Heinz-SiegfriedLibreCat
Publishing Year
Journal Title
Molecular Crystals and Liquid Crystals
Volume
439
Issue
1
Page
281/[2147]-291/[2157]
LibreCat-ID
Cite this
Strauß J, Hoischen A, Kitzerow H-S. An Efficient Optical Method to Detect Phase Transitions in Liquid Crystals. Molecular Crystals and Liquid Crystals. 2007;439(1):281/[2147]-291/[2157]. doi:10.1080/15421400590955703
Strauß, J., Hoischen, A., & Kitzerow, H.-S. (2007). An Efficient Optical Method to Detect Phase Transitions in Liquid Crystals. Molecular Crystals and Liquid Crystals, 439(1), 281/[2147]-291/[2157]. https://doi.org/10.1080/15421400590955703
@article{Strauß_Hoischen_Kitzerow_2007, title={An Efficient Optical Method to Detect Phase Transitions in Liquid Crystals}, volume={439}, DOI={10.1080/15421400590955703}, number={1}, journal={Molecular Crystals and Liquid Crystals}, publisher={Informa UK Limited}, author={Strauß, Jochen and Hoischen, Andreas and Kitzerow, Heinz-Siegfried}, year={2007}, pages={281/[2147]-291/[2157]} }
Strauß, Jochen, Andreas Hoischen, and Heinz-Siegfried Kitzerow. “An Efficient Optical Method to Detect Phase Transitions in Liquid Crystals.” Molecular Crystals and Liquid Crystals 439, no. 1 (2007): 281/[2147]-291/[2157]. https://doi.org/10.1080/15421400590955703.
J. Strauß, A. Hoischen, and H.-S. Kitzerow, “An Efficient Optical Method to Detect Phase Transitions in Liquid Crystals,” Molecular Crystals and Liquid Crystals, vol. 439, no. 1, p. 281/[2147]-291/[2157], 2007, doi: 10.1080/15421400590955703.
Strauß, Jochen, et al. “An Efficient Optical Method to Detect Phase Transitions in Liquid Crystals.” Molecular Crystals and Liquid Crystals, vol. 439, no. 1, Informa UK Limited, 2007, p. 281/[2147]-291/[2157], doi:10.1080/15421400590955703.