Key activity descriptors of nickel-iron oxygen evolution electrocatalysts in the presence of alkali metal cations
M. Görlin, J. Halldin Stenlid, S. Koroidov, H.-Y. Wang, M. Börner, M. Shipilin, A. Kalinko, V. Murzin, O.V. Safonova, M. Nachtegaal, A. Uheida, J. Dutta, M. Bauer, A. Nilsson, O. Diaz-Morales, Nature Communications 11 (2020).
Download
No fulltext has been uploaded.
Journal Article
| Published
| English
Author
Görlin, Mikaela;
Halldin Stenlid, Joakim;
Koroidov, Sergey;
Wang, Hsin-Yi;
Börner, Mia;
Shipilin, Mikhail;
Kalinko, Aleksandr;
Murzin, Vadim;
Safonova, Olga V.;
Nachtegaal, Maarten;
Uheida, Abdusalam;
Dutta, Joydeep
All
All
Department
Abstract
<jats:title>Abstract</jats:title><jats:p>Efficient oxygen evolution reaction (OER) electrocatalysts are pivotal for sustainable fuel production, where the Ni-Fe oxyhydroxide (OOH) is among the most active catalysts for alkaline OER. Electrolyte alkali metal cations have been shown to modify the activity and reaction intermediates, however, the exact mechanism is at question due to unexplained deviations from the cation size trend. Our X-ray absorption spectroelectrochemical results show that bigger cations shift the Ni<jats:sup>2+/(3+δ)+</jats:sup> redox peak and OER activity to lower potentials (however, with typical discrepancies), following the order CsOH > NaOH ≈ KOH > RbOH > LiOH. Here, we find that the OER activity follows the variations in electrolyte pH rather than a specific cation, which accounts for differences both in basicity of the alkali hydroxides and other contributing anomalies. Our density functional theory-derived reactivity descriptors confirm that cations impose negligible effect on the Lewis acidity of Ni, Fe, and O lattice sites, thus strengthening the conclusions of an indirect pH effect.</jats:p>
Keywords
Publishing Year
Journal Title
Nature Communications
Volume
11
Issue
1
Article Number
6181
ISSN
LibreCat-ID
Cite this
Görlin M, Halldin Stenlid J, Koroidov S, et al. Key activity descriptors of nickel-iron oxygen evolution electrocatalysts in the presence of alkali metal cations. Nature Communications. 2020;11(1). doi:10.1038/s41467-020-19729-2
Görlin, M., Halldin Stenlid, J., Koroidov, S., Wang, H.-Y., Börner, M., Shipilin, M., Kalinko, A., Murzin, V., Safonova, O. V., Nachtegaal, M., Uheida, A., Dutta, J., Bauer, M., Nilsson, A., & Diaz-Morales, O. (2020). Key activity descriptors of nickel-iron oxygen evolution electrocatalysts in the presence of alkali metal cations. Nature Communications, 11(1), Article 6181. https://doi.org/10.1038/s41467-020-19729-2
@article{Görlin_Halldin Stenlid_Koroidov_Wang_Börner_Shipilin_Kalinko_Murzin_Safonova_Nachtegaal_et al._2020, title={Key activity descriptors of nickel-iron oxygen evolution electrocatalysts in the presence of alkali metal cations}, volume={11}, DOI={10.1038/s41467-020-19729-2}, number={16181}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Görlin, Mikaela and Halldin Stenlid, Joakim and Koroidov, Sergey and Wang, Hsin-Yi and Börner, Mia and Shipilin, Mikhail and Kalinko, Aleksandr and Murzin, Vadim and Safonova, Olga V. and Nachtegaal, Maarten and et al.}, year={2020} }
Görlin, Mikaela, Joakim Halldin Stenlid, Sergey Koroidov, Hsin-Yi Wang, Mia Börner, Mikhail Shipilin, Aleksandr Kalinko, et al. “Key Activity Descriptors of Nickel-Iron Oxygen Evolution Electrocatalysts in the Presence of Alkali Metal Cations.” Nature Communications 11, no. 1 (2020). https://doi.org/10.1038/s41467-020-19729-2.
M. Görlin et al., “Key activity descriptors of nickel-iron oxygen evolution electrocatalysts in the presence of alkali metal cations,” Nature Communications, vol. 11, no. 1, Art. no. 6181, 2020, doi: 10.1038/s41467-020-19729-2.
Görlin, Mikaela, et al. “Key Activity Descriptors of Nickel-Iron Oxygen Evolution Electrocatalysts in the Presence of Alkali Metal Cations.” Nature Communications, vol. 11, no. 1, 6181, Springer Science and Business Media LLC, 2020, doi:10.1038/s41467-020-19729-2.