Correlation between Taylor Model Prediction and Transmission Electron Microscopy-Based Microstructural Investigations of Quasi-In Situ Tensile Deformation of Additively Manufactured FeCo Alloy

S. Pramanik, L. Tasche, K.-P. Hoyer, M. Schaper, Journal of Materials Engineering and Performance 30 (2021) 8048–8056.

Download
No fulltext has been uploaded.
Journal Article | Published | English
Abstract
<jats:title>Abstract</jats:title><jats:p>Within this research, the multiscale microstructural evolution before and after the tensile test of a FeCo alloy is addressed. X-ray <jats:italic>µ</jats:italic>-computer tomography (CT), electron backscattered diffraction (EBSD), and transmission electron microscopy (TEM) are employed to determine the microstructure on different length scales. Microstructural evolution is studied by performing EBSD of the same area before and after the tensile test. As a result, <jats:inline-formula><jats:alternatives><jats:tex-math>$$\langle$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mo>⟨</mml:mo> </mml:math></jats:alternatives></jats:inline-formula>001<jats:inline-formula><jats:alternatives><jats:tex-math>$$\rangle$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mo>⟩</mml:mo> </mml:math></jats:alternatives></jats:inline-formula>||TD, <jats:inline-formula><jats:alternatives><jats:tex-math>$$\langle$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mo>⟨</mml:mo> </mml:math></jats:alternatives></jats:inline-formula>011<jats:inline-formula><jats:alternatives><jats:tex-math>$$\rangle$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mo>⟩</mml:mo> </mml:math></jats:alternatives></jats:inline-formula>||TD are hard orientations and <jats:inline-formula><jats:alternatives><jats:tex-math>$$\langle$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mo>⟨</mml:mo> </mml:math></jats:alternatives></jats:inline-formula>111<jats:inline-formula><jats:alternatives><jats:tex-math>$$\rangle$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mo>⟩</mml:mo> </mml:math></jats:alternatives></jats:inline-formula>||TD is soft orientations for deformation accommodation. It is not possible to predict the deformation of a single grain with the Taylor model. However, the Taylor model accurately predicts the orientation of all grains after deformation. {123}<jats:inline-formula><jats:alternatives><jats:tex-math>$$\langle$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mo>⟨</mml:mo> </mml:math></jats:alternatives></jats:inline-formula>111<jats:inline-formula><jats:alternatives><jats:tex-math>$$\rangle$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mo>⟩</mml:mo> </mml:math></jats:alternatives></jats:inline-formula> is the most active slip system, and {112}<jats:inline-formula><jats:alternatives><jats:tex-math>$$\langle$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mo>⟨</mml:mo> </mml:math></jats:alternatives></jats:inline-formula>111<jats:inline-formula><jats:alternatives><jats:tex-math>$$\rangle$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mo>⟩</mml:mo> </mml:math></jats:alternatives></jats:inline-formula> is the least active slip system. Both EBSD micrographs show grain subdivision after tensile testing. TEM images show the formation of dislocation cells. Correlative HRTEM images show unresolved lattice fringes at dislocation cell boundaries, whereas resolved lattice fringes are observed at dislocation cell interior. Since Schmid’s law is unable to predict the deformation behavior of grains, the boundary slip transmission accurately predicts the grain deformation behavior.</jats:p>
Publishing Year
Journal Title
Journal of Materials Engineering and Performance
Volume
30
Issue
11
Page
8048-8056
LibreCat-ID

Cite this

Pramanik S, Tasche L, Hoyer K-P, Schaper M. Correlation between Taylor Model Prediction and Transmission Electron Microscopy-Based Microstructural Investigations of Quasi-In Situ Tensile Deformation of Additively Manufactured FeCo Alloy. Journal of Materials Engineering and Performance. 2021;30(11):8048-8056. doi:10.1007/s11665-021-06065-9
Pramanik, S., Tasche, L., Hoyer, K.-P., & Schaper, M. (2021). Correlation between Taylor Model Prediction and Transmission Electron Microscopy-Based Microstructural Investigations of Quasi-In Situ Tensile Deformation of Additively Manufactured FeCo Alloy. Journal of Materials Engineering and Performance, 30(11), 8048–8056. https://doi.org/10.1007/s11665-021-06065-9
@article{Pramanik_Tasche_Hoyer_Schaper_2021, title={Correlation between Taylor Model Prediction and Transmission Electron Microscopy-Based Microstructural Investigations of Quasi-In Situ Tensile Deformation of Additively Manufactured FeCo Alloy}, volume={30}, DOI={10.1007/s11665-021-06065-9}, number={11}, journal={Journal of Materials Engineering and Performance}, publisher={Springer Science and Business Media LLC}, author={Pramanik, Sudipta and Tasche, Lennart and Hoyer, Kay-Peter and Schaper, Mirko}, year={2021}, pages={8048–8056} }
Pramanik, Sudipta, Lennart Tasche, Kay-Peter Hoyer, and Mirko Schaper. “Correlation between Taylor Model Prediction and Transmission Electron Microscopy-Based Microstructural Investigations of Quasi-In Situ Tensile Deformation of Additively Manufactured FeCo Alloy.” Journal of Materials Engineering and Performance 30, no. 11 (2021): 8048–56. https://doi.org/10.1007/s11665-021-06065-9.
S. Pramanik, L. Tasche, K.-P. Hoyer, and M. Schaper, “Correlation between Taylor Model Prediction and Transmission Electron Microscopy-Based Microstructural Investigations of Quasi-In Situ Tensile Deformation of Additively Manufactured FeCo Alloy,” Journal of Materials Engineering and Performance, vol. 30, no. 11, pp. 8048–8056, 2021, doi: 10.1007/s11665-021-06065-9.
Pramanik, Sudipta, et al. “Correlation between Taylor Model Prediction and Transmission Electron Microscopy-Based Microstructural Investigations of Quasi-In Situ Tensile Deformation of Additively Manufactured FeCo Alloy.” Journal of Materials Engineering and Performance, vol. 30, no. 11, Springer Science and Business Media LLC, 2021, pp. 8048–56, doi:10.1007/s11665-021-06065-9.

Export

Marked Publications

Open Data LibreCat

Search this title in

Google Scholar