A normal form for definite quadratic forms over $\mathbb{F}_{q}[t]$

M. Kirschmer, Mathematics of Computation 81 (2012) 1619–1634.

Download
No fulltext has been uploaded.
Journal Article | Published | English
Abstract
An efficient algorithm to compute automorphism groups and isometries of definite Fq[t]-lattices for odd q is presented. The algorithm requires several square root computations in Fq₂ but no enumeration of orbits having more than eight elements.
Publishing Year
Journal Title
Mathematics of Computation
Volume
81
Issue
279
Page
1619-1634
LibreCat-ID

Cite this

Kirschmer M. A normal form for definite quadratic forms over $\mathbb{F}_{q}[t]$. Mathematics of Computation. 2012;81(279):1619-1634. doi:10.1090/s0025-5718-2011-02570-6
Kirschmer, M. (2012). A normal form for definite quadratic forms over $\mathbb{F}_{q}[t]$. Mathematics of Computation, 81(279), 1619–1634. https://doi.org/10.1090/s0025-5718-2011-02570-6
@article{Kirschmer_2012, title={A normal form for definite quadratic forms over $\mathbb{F}_{q}[t]$}, volume={81}, DOI={10.1090/s0025-5718-2011-02570-6}, number={279}, journal={Mathematics of Computation}, publisher={American Mathematical Society (AMS)}, author={Kirschmer, Markus}, year={2012}, pages={1619–1634} }
Kirschmer, Markus. “A Normal Form for Definite Quadratic Forms over $\mathbb{F}_{q}[t]$.” Mathematics of Computation 81, no. 279 (2012): 1619–34. https://doi.org/10.1090/s0025-5718-2011-02570-6.
M. Kirschmer, “A normal form for definite quadratic forms over $\mathbb{F}_{q}[t]$,” Mathematics of Computation, vol. 81, no. 279, pp. 1619–1634, 2012, doi: 10.1090/s0025-5718-2011-02570-6.
Kirschmer, Markus. “A Normal Form for Definite Quadratic Forms over $\mathbb{F}_{q}[t]$.” Mathematics of Computation, vol. 81, no. 279, American Mathematical Society (AMS), 2012, pp. 1619–34, doi:10.1090/s0025-5718-2011-02570-6.

Export

Marked Publications

Open Data LibreCat

Search this title in

Google Scholar