On an analogue to the Lucas-Lehmer-Riesel test using elliptic curves
M. Kirschmer, M.H. Mertens, in: Integers, DE GRUYTER, 2013.
Download
No fulltext has been uploaded.
Book Chapter
| Published
| English
Author
Kirschmer, MarkusLibreCat;
Mertens, Michael H.
Department
Abstract
Following an idea of B. H. Gross, who presented an elliptic curve test for Mersenneprimes Mₚ=2ᵖ−1, we propose a similar test with elliptic curves for generalizedThabit primesK(h, n) := h·2ⁿ−1 for any positive odd number h and any integer n> log₂(h)+2.
Publishing Year
Book Title
Integers
ISBN
LibreCat-ID
Cite this
Kirschmer M, Mertens MH. On an analogue to the Lucas-Lehmer-Riesel test using elliptic curves. In: Integers. DE GRUYTER; 2013. doi:10.1515/9783110298161.212
Kirschmer, M., & Mertens, M. H. (2013). On an analogue to the Lucas-Lehmer-Riesel test using elliptic curves. In Integers. DE GRUYTER. https://doi.org/10.1515/9783110298161.212
@inbook{Kirschmer_Mertens_2013, title={On an analogue to the Lucas-Lehmer-Riesel test using elliptic curves}, DOI={10.1515/9783110298161.212}, booktitle={Integers}, publisher={DE GRUYTER}, author={Kirschmer, Markus and Mertens, Michael H.}, year={2013} }
Kirschmer, Markus, and Michael H. Mertens. “On an Analogue to the Lucas-Lehmer-Riesel Test Using Elliptic Curves.” In Integers. DE GRUYTER, 2013. https://doi.org/10.1515/9783110298161.212.
M. Kirschmer and M. H. Mertens, “On an analogue to the Lucas-Lehmer-Riesel test using elliptic curves,” in Integers, DE GRUYTER, 2013.
Kirschmer, Markus, and Michael H. Mertens. “On an Analogue to the Lucas-Lehmer-Riesel Test Using Elliptic Curves.” Integers, DE GRUYTER, 2013, doi:10.1515/9783110298161.212.