Breaking the exascale barrier for the electronic structure problem in ab-initio molecular dynamics

R. Schade, T. Kenter, H. Elgabarty, M. Lass, T. Kühne, C. Plessl, The International Journal of High Performance Computing Applications (2023).

Journal Article | Published | English
Abstract
<jats:p> The non-orthogonal local submatrix method applied to electronic structure–based molecular dynamics simulations is shown to exceed 1.1 EFLOP/s in FP16/FP32-mixed floating-point arithmetic when using 4400 NVIDIA A100 GPUs of the Perlmutter system. This is enabled by a modification of the original method that pushes the sustained fraction of the peak performance to about 80%. Example calculations are performed for SARS-CoV-2 spike proteins with up to 83 million atoms. </jats:p>
Publishing Year
Journal Title
The International Journal of High Performance Computing Applications
Article Number
109434202311776
LibreCat-ID

Cite this

Schade R, Kenter T, Elgabarty H, Lass M, Kühne T, Plessl C. Breaking the exascale barrier for the electronic structure problem in ab-initio molecular dynamics. The International Journal of High Performance Computing Applications. Published online 2023. doi:10.1177/10943420231177631
Schade, R., Kenter, T., Elgabarty, H., Lass, M., Kühne, T., & Plessl, C. (2023). Breaking the exascale barrier for the electronic structure problem in ab-initio molecular dynamics. The International Journal of High Performance Computing Applications, Article 109434202311776. https://doi.org/10.1177/10943420231177631
@article{Schade_Kenter_Elgabarty_Lass_Kühne_Plessl_2023, title={Breaking the exascale barrier for the electronic structure problem in ab-initio molecular dynamics}, DOI={10.1177/10943420231177631}, number={109434202311776}, journal={The International Journal of High Performance Computing Applications}, publisher={SAGE Publications}, author={Schade, Robert and Kenter, Tobias and Elgabarty, Hossam and Lass, Michael and Kühne, Thomas and Plessl, Christian}, year={2023} }
Schade, Robert, Tobias Kenter, Hossam Elgabarty, Michael Lass, Thomas Kühne, and Christian Plessl. “Breaking the Exascale Barrier for the Electronic Structure Problem in Ab-Initio Molecular Dynamics.” The International Journal of High Performance Computing Applications, 2023. https://doi.org/10.1177/10943420231177631.
R. Schade, T. Kenter, H. Elgabarty, M. Lass, T. Kühne, and C. Plessl, “Breaking the exascale barrier for the electronic structure problem in ab-initio molecular dynamics,” The International Journal of High Performance Computing Applications, Art. no. 109434202311776, 2023, doi: 10.1177/10943420231177631.
Schade, Robert, et al. “Breaking the Exascale Barrier for the Electronic Structure Problem in Ab-Initio Molecular Dynamics.” The International Journal of High Performance Computing Applications, 109434202311776, SAGE Publications, 2023, doi:10.1177/10943420231177631.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]

Link(s) to Main File(s)
Access Level
Restricted Closed Access

Export

Marked Publications

Open Data LibreCat

Search this title in

Google Scholar