Parameterized complexity of abduction in Schaefer’s framework
Y. Mahmood, A. Meier, J. Schmidt, Journal of Logic and Computation 31 (2021) 266–296.
Download
No fulltext has been uploaded.
Journal Article
| Published
| English
Author
Mahmood, Yasir;
Meier, Arne;
Schmidt, Johannes
Department
Abstract
<jats:title>Abstract</jats:title>
<jats:p>Abductive reasoning is a non-monotonic formalism stemming from the work of Peirce. It describes the process of deriving the most plausible explanations of known facts. Considering the positive version, asking for sets of variables as explanations, we study, besides the problem of wether there exists a set of explanations, two explanation size limited variants of this reasoning problem (less than or equal to, and equal to a given size bound). In this paper, we present a thorough two-dimensional classification of these problems: the first dimension is regarding the parameterized complexity under a wealth of different parameterizations, and the second dimension spans through all possible Boolean fragments of these problems in Schaefer’s constraint satisfaction framework with co-clones (T. J. Schaefer. The complexity of satisfiability problems. In Proceedings of the 10th Annual ACM Symposium on Theory of Computing, May 1–3, 1978, San Diego, California, USA, R.J. Lipton, W.A. Burkhard, W.J. Savitch, E.P. Friedman, A.V. Aho eds, pp. 216–226. ACM, 1978). Thereby, we almost complete the parameterized complexity classification program initiated by Fellows et al. (The parameterized complexity of abduction. In Proceedings of the Twenty-Sixth AAAI Conference on Articial Intelligence, July 22–26, 2012, Toronto, Ontario, Canada, J. Homann, B. Selman eds. AAAI Press, 2012), partially building on the results by Nordh and Zanuttini (What makes propositional abduction tractable. Artificial Intelligence, 172, 1245–1284, 2008). In this process, we outline a fine-grained analysis of the inherent parameterized intractability of these problems and pinpoint their FPT parts. As the standard algebraic approach is not applicable to our problems, we develop an alternative method that makes the algebraic tools partially available again.</jats:p>
Keywords
Publishing Year
Journal Title
Journal of Logic and Computation
Volume
31
Issue
1
Page
266-296
LibreCat-ID
Cite this
Mahmood Y, Meier A, Schmidt J. Parameterized complexity of abduction in Schaefer’s framework. Journal of Logic and Computation. 2021;31(1):266-296. doi:10.1093/logcom/exaa079
Mahmood, Y., Meier, A., & Schmidt, J. (2021). Parameterized complexity of abduction in Schaefer’s framework. Journal of Logic and Computation, 31(1), 266–296. https://doi.org/10.1093/logcom/exaa079
@article{Mahmood_Meier_Schmidt_2021, title={Parameterized complexity of abduction in Schaefer’s framework}, volume={31}, DOI={10.1093/logcom/exaa079}, number={1}, journal={Journal of Logic and Computation}, publisher={Oxford University Press (OUP)}, author={Mahmood, Yasir and Meier, Arne and Schmidt, Johannes}, year={2021}, pages={266–296} }
Mahmood, Yasir, Arne Meier, and Johannes Schmidt. “Parameterized Complexity of Abduction in Schaefer’s Framework.” Journal of Logic and Computation 31, no. 1 (2021): 266–96. https://doi.org/10.1093/logcom/exaa079.
Y. Mahmood, A. Meier, and J. Schmidt, “Parameterized complexity of abduction in Schaefer’s framework,” Journal of Logic and Computation, vol. 31, no. 1, pp. 266–296, 2021, doi: 10.1093/logcom/exaa079.
Mahmood, Yasir, et al. “Parameterized Complexity of Abduction in Schaefer’s Framework.” Journal of Logic and Computation, vol. 31, no. 1, Oxford University Press (OUP), 2021, pp. 266–96, doi:10.1093/logcom/exaa079.