Binary Hermitian Lattices over Number Fields
M. Kirschmer, G. Nebe, Experimental Mathematics 31 (2022) 280–301.
Download
No fulltext has been uploaded.
Journal Article
| Published
| English
Author
Kirschmer, MarkusLibreCat;
Nebe, Gabriele
Department
Abstract
In a previous paper the authors developed an algorithm to classify certain quaternary quadratic lattices over totally real fields. The present article applies this algorithm to the classification of binary Hermitian lattices over totally imaginary fields. We use it in particular to classify the 48-dimensional extremal even unimodular lattices over the integers that admit a semilarge automorphism.
Keywords
Publishing Year
Journal Title
Experimental Mathematics
Volume
31
Issue
1
Page
280-301
LibreCat-ID
Cite this
Kirschmer M, Nebe G. Binary Hermitian Lattices over Number Fields. Experimental Mathematics. 2022;31(1):280-301. doi:10.1080/10586458.2019.1618756
Kirschmer, M., & Nebe, G. (2022). Binary Hermitian Lattices over Number Fields. Experimental Mathematics, 31(1), 280–301. https://doi.org/10.1080/10586458.2019.1618756
@article{Kirschmer_Nebe_2022, title={Binary Hermitian Lattices over Number Fields}, volume={31}, DOI={10.1080/10586458.2019.1618756}, number={1}, journal={Experimental Mathematics}, publisher={Informa UK Limited}, author={Kirschmer, Markus and Nebe, Gabriele}, year={2022}, pages={280–301} }
Kirschmer, Markus, and Gabriele Nebe. “Binary Hermitian Lattices over Number Fields.” Experimental Mathematics 31, no. 1 (2022): 280–301. https://doi.org/10.1080/10586458.2019.1618756.
M. Kirschmer and G. Nebe, “Binary Hermitian Lattices over Number Fields,” Experimental Mathematics, vol. 31, no. 1, pp. 280–301, 2022, doi: 10.1080/10586458.2019.1618756.
Kirschmer, Markus, and Gabriele Nebe. “Binary Hermitian Lattices over Number Fields.” Experimental Mathematics, vol. 31, no. 1, Informa UK Limited, 2022, pp. 280–301, doi:10.1080/10586458.2019.1618756.