Robust Preconditioning Estimates for Convection-Dominated Elliptic Problems via a Streamline Poincaré--Friedrichs Inequality
O. Axelsson, J. Karátson, B. Kovács, SIAM Journal on Numerical Analysis 52 (2014) 2957–2976.
Download
No fulltext has been uploaded.
Journal Article
| Published
| English
Author
Axelsson, Owe;
Karátson, János;
Kovács, Balázs
Department
Publishing Year
Journal Title
SIAM Journal on Numerical Analysis
Volume
52
Issue
6
Page
2957-2976
LibreCat-ID
Cite this
Axelsson O, Karátson J, Kovács B. Robust Preconditioning Estimates for Convection-Dominated Elliptic Problems via a Streamline Poincaré--Friedrichs Inequality. SIAM Journal on Numerical Analysis. 2014;52(6):2957-2976. doi:10.1137/130940268
Axelsson, O., Karátson, J., & Kovács, B. (2014). Robust Preconditioning Estimates for Convection-Dominated Elliptic Problems via a Streamline Poincaré--Friedrichs Inequality. SIAM Journal on Numerical Analysis, 52(6), 2957–2976. https://doi.org/10.1137/130940268
@article{Axelsson_Karátson_Kovács_2014, title={Robust Preconditioning Estimates for Convection-Dominated Elliptic Problems via a Streamline Poincaré--Friedrichs Inequality}, volume={52}, DOI={10.1137/130940268}, number={6}, journal={SIAM Journal on Numerical Analysis}, publisher={Society for Industrial & Applied Mathematics (SIAM)}, author={Axelsson, Owe and Karátson, János and Kovács, Balázs}, year={2014}, pages={2957–2976} }
Axelsson, Owe, János Karátson, and Balázs Kovács. “Robust Preconditioning Estimates for Convection-Dominated Elliptic Problems via a Streamline Poincaré--Friedrichs Inequality.” SIAM Journal on Numerical Analysis 52, no. 6 (2014): 2957–76. https://doi.org/10.1137/130940268.
O. Axelsson, J. Karátson, and B. Kovács, “Robust Preconditioning Estimates for Convection-Dominated Elliptic Problems via a Streamline Poincaré--Friedrichs Inequality,” SIAM Journal on Numerical Analysis, vol. 52, no. 6, pp. 2957–2976, 2014, doi: 10.1137/130940268.
Axelsson, Owe, et al. “Robust Preconditioning Estimates for Convection-Dominated Elliptic Problems via a Streamline Poincaré--Friedrichs Inequality.” SIAM Journal on Numerical Analysis, vol. 52, no. 6, Society for Industrial & Applied Mathematics (SIAM), 2014, pp. 2957–76, doi:10.1137/130940268.