Maximum norm stability and error estimates for the evolving surface finite element method
B. Kovács, C.A. Power Guerra, Numerical Methods for Partial Differential Equations 34 (2017) 518–554.
Download
No fulltext has been uploaded.
Journal Article
| Published
| English
Author
Kovács, BalázsLibreCat ;
Power Guerra, Christian Andreas
Department
Publishing Year
Journal Title
Numerical Methods for Partial Differential Equations
Volume
34
Issue
2
Page
518-554
ISSN
LibreCat-ID
Cite this
Kovács B, Power Guerra CA. Maximum norm stability and error estimates for the evolving surface finite element method. Numerical Methods for Partial Differential Equations. 2017;34(2):518-554. doi:10.1002/num.22212
Kovács, B., & Power Guerra, C. A. (2017). Maximum norm stability and error estimates for the evolving surface finite element method. Numerical Methods for Partial Differential Equations, 34(2), 518–554. https://doi.org/10.1002/num.22212
@article{Kovács_Power Guerra_2017, title={Maximum norm stability and error estimates for the evolving surface finite element method}, volume={34}, DOI={10.1002/num.22212}, number={2}, journal={Numerical Methods for Partial Differential Equations}, publisher={Wiley}, author={Kovács, Balázs and Power Guerra, Christian Andreas}, year={2017}, pages={518–554} }
Kovács, Balázs, and Christian Andreas Power Guerra. “Maximum Norm Stability and Error Estimates for the Evolving Surface Finite Element Method.” Numerical Methods for Partial Differential Equations 34, no. 2 (2017): 518–54. https://doi.org/10.1002/num.22212.
B. Kovács and C. A. Power Guerra, “Maximum norm stability and error estimates for the evolving surface finite element method,” Numerical Methods for Partial Differential Equations, vol. 34, no. 2, pp. 518–554, 2017, doi: 10.1002/num.22212.
Kovács, Balázs, and Christian Andreas Power Guerra. “Maximum Norm Stability and Error Estimates for the Evolving Surface Finite Element Method.” Numerical Methods for Partial Differential Equations, vol. 34, no. 2, Wiley, 2017, pp. 518–54, doi:10.1002/num.22212.