Error analysis for the numerical approximation of the harmonic map heat flow with nodal constraints
S. Bartels, B. Kovács, Z. Wang, IMA Journal of Numerical Analysis (2023).
Download
No fulltext has been uploaded.
Journal Article
| Published
| English
Author
Bartels, Sören;
Kovács, BalázsLibreCat ;
Wang, Zhangxian
Department
Abstract
<jats:title>Abstract</jats:title>
<jats:p>An error estimate for a canonical discretization of the harmonic map heat flow into spheres is derived. The numerical scheme uses standard finite elements with a nodal treatment of linearized unit-length constraints. The analysis is based on elementary approximation results and only uses the discrete weak formulation.</jats:p>
Publishing Year
Journal Title
IMA Journal of Numerical Analysis
LibreCat-ID
Cite this
Bartels S, Kovács B, Wang Z. Error analysis for the numerical approximation of the harmonic map heat flow with nodal constraints. IMA Journal of Numerical Analysis. Published online 2023. doi:10.1093/imanum/drad037
Bartels, S., Kovács, B., & Wang, Z. (2023). Error analysis for the numerical approximation of the harmonic map heat flow with nodal constraints. IMA Journal of Numerical Analysis. https://doi.org/10.1093/imanum/drad037
@article{Bartels_Kovács_Wang_2023, title={Error analysis for the numerical approximation of the harmonic map heat flow with nodal constraints}, DOI={10.1093/imanum/drad037}, journal={IMA Journal of Numerical Analysis}, publisher={Oxford University Press (OUP)}, author={Bartels, Sören and Kovács, Balázs and Wang, Zhangxian}, year={2023} }
Bartels, Sören, Balázs Kovács, and Zhangxian Wang. “Error Analysis for the Numerical Approximation of the Harmonic Map Heat Flow with Nodal Constraints.” IMA Journal of Numerical Analysis, 2023. https://doi.org/10.1093/imanum/drad037.
S. Bartels, B. Kovács, and Z. Wang, “Error analysis for the numerical approximation of the harmonic map heat flow with nodal constraints,” IMA Journal of Numerical Analysis, 2023, doi: 10.1093/imanum/drad037.
Bartels, Sören, et al. “Error Analysis for the Numerical Approximation of the Harmonic Map Heat Flow with Nodal Constraints.” IMA Journal of Numerical Analysis, Oxford University Press (OUP), 2023, doi:10.1093/imanum/drad037.