Temperedness of locally symmetric spaces: The product case
T. Weich, L.L. Wolf, ArXiv:2304.09573 (2023).
Download
No fulltext has been uploaded.
Preprint
| English
Author
Weich, Tobias;
Wolf, Lasse L.
Department
Abstract
Let $X=X_1\times X_2$ be a product of two rank one symmetric spaces of
non-compact type and $\Gamma$ a torsion-free discrete subgroup in $G_1\times
G_2$. We show that the spectrum of $\Gamma \backslash X$ is related to the
asymptotic growth of $\Gamma$ in the two direction defined by the two factors.
We obtain that $L^2(\Gamma \backslash G)$ is tempered for large class of
$\Gamma$.
Publishing Year
Journal Title
arXiv:2304.09573
LibreCat-ID
Cite this
Weich T, Wolf LL. Temperedness of locally symmetric spaces: The product case. arXiv:230409573. Published online 2023.
Weich, T., & Wolf, L. L. (2023). Temperedness of locally symmetric spaces: The product case. In arXiv:2304.09573.
@article{Weich_Wolf_2023, title={Temperedness of locally symmetric spaces: The product case}, journal={arXiv:2304.09573}, author={Weich, Tobias and Wolf, Lasse L.}, year={2023} }
Weich, Tobias, and Lasse L. Wolf. “Temperedness of Locally Symmetric Spaces: The Product Case.” ArXiv:2304.09573, 2023.
T. Weich and L. L. Wolf, “Temperedness of locally symmetric spaces: The product case,” arXiv:2304.09573. 2023.
Weich, Tobias, and Lasse L. Wolf. “Temperedness of Locally Symmetric Spaces: The Product Case.” ArXiv:2304.09573, 2023.