Search Dynamics on Multimodal Multi-Objective Problems
P. Kerschke, H. Wang, M. Preuss, C. Grimme, A. Deutz, H. Trautmann, M. Emmerich, Evolutionary Computation (ECJ) 27 (2019) 577–609.
Download
No fulltext has been uploaded.
Journal Article
| English
Author
Kerschke, Pascal;
Wang, Hao;
Preuss, Mike;
Grimme, Christian;
Deutz, André;
Trautmann, HeikeLibreCat ;
Emmerich, Michael
Abstract
We continue recent work on the definition of multimodality in multiobjective optimization (MO) and the introduction of a test bed for multimodal MO problems. This goes beyond well-known diversity maintenance approaches but instead focuses on the landscape topology induced by the objective functions. More general multimodal MO problems are considered by allowing ellipsoid contours for single-objective subproblems. An experimental analysis compares two MO algorithms, one that explicitly relies on hypervolume gradient approximation, and one that is based on local search, both on a selection of generated example problems. We do not focus on performance but on the interaction induced by the problems and algorithms, which can be described by means of specific characteristics explicitly designed for the multimodal MO setting. Furthermore, we widen the scope of our analysis by additionally applying visualization techniques in the decision space. This strengthens and extends the foundations for Exploratory Landscape Analysis (ELA) in MO.
Publishing Year
Journal Title
Evolutionary Computation (ECJ)
Volume
27
Issue
4
Page
577–609
LibreCat-ID
Cite this
Kerschke P, Wang H, Preuss M, et al. Search Dynamics on Multimodal Multi-Objective Problems. Evolutionary Computation (ECJ). 2019;27(4):577–609. doi:10.1162/evco_a_00234
Kerschke, P., Wang, H., Preuss, M., Grimme, C., Deutz, A., Trautmann, H., & Emmerich, M. (2019). Search Dynamics on Multimodal Multi-Objective Problems. Evolutionary Computation (ECJ), 27(4), 577–609. https://doi.org/10.1162/evco_a_00234
@article{Kerschke_Wang_Preuss_Grimme_Deutz_Trautmann_Emmerich_2019, title={Search Dynamics on Multimodal Multi-Objective Problems}, volume={27}, DOI={10.1162/evco_a_00234}, number={4}, journal={Evolutionary Computation (ECJ)}, author={Kerschke, Pascal and Wang, Hao and Preuss, Mike and Grimme, Christian and Deutz, André and Trautmann, Heike and Emmerich, Michael}, year={2019}, pages={577–609} }
Kerschke, Pascal, Hao Wang, Mike Preuss, Christian Grimme, André Deutz, Heike Trautmann, and Michael Emmerich. “Search Dynamics on Multimodal Multi-Objective Problems.” Evolutionary Computation (ECJ) 27, no. 4 (2019): 577–609. https://doi.org/10.1162/evco_a_00234.
P. Kerschke et al., “Search Dynamics on Multimodal Multi-Objective Problems,” Evolutionary Computation (ECJ), vol. 27, no. 4, pp. 577–609, 2019, doi: 10.1162/evco_a_00234.
Kerschke, Pascal, et al. “Search Dynamics on Multimodal Multi-Objective Problems.” Evolutionary Computation (ECJ), vol. 27, no. 4, 2019, pp. 577–609, doi:10.1162/evco_a_00234.