Potassium Ion Conductivity in the Cubic Labyrinth of a Piezoelectric, Antiferromagnetic Oxoferrate(III) Tellurate(VI)
R. Albrecht, M. Hoelzel, H. Beccard, M. Rüsing, L. Eng, T. Doert, M. Ruck, Chemistry – A European Journal 27 (2021) 14299–14306.
Download
No fulltext has been uploaded.
Journal Article
| Published
| English
Author
Albrecht, Ralf;
Hoelzel, Markus;
Beccard, Henrik;
Rüsing, MichaelLibreCat ;
Eng, Lukas;
Doert, Thomas;
Ruck, Michael
Abstract
Orange-colored crystals of the oxoferrate tellurate K12+6xFe6Te4−xO27 [x=0.222(4)] were synthesized in a potassium hydroxide hydroflux with a molar water–base ratio n(H2O)/n(KOH) of 1.5 starting from Fe(NO3)3 ⋅ 9H2O, TeO2 and H2O2 at about 200 °C. By using (NH4)2TeO4 instead of TeO2, a fine powder consisting of microcrystalline spheres of K12+6xFe6Te4−xO27 was obtained. K12+6xFe6Te4−xO27 crystallizes in the acentric cubic space group Iurn:x-wiley:09476539:media:chem202102464:chem202102464-math-0001 3d. [FeIIIO5] pyramids share their apical atoms in [Fe2O9] groups and two of their edges with [TeVIO6] octahedra to form an open framework that consists of two loosely connected, but not interpenetrating, chiral networks. The flexibility of the hinged oxometalate network manifests in a piezoelectric response similar to that of LiNbO3.The potassium cations are mobile in channels that run along the <111> directions and cross in cavities acting as nodes. The ion conductivity of cold-pressed pellets of ball-milled K12+6xFe6Te4−xO27 is 2.3×10^(−4) S ⋅ cm^(−1) at room temperature. Magnetization measurements and neutron diffraction indicate antiferromagnetic coupling in the [Fe2O9] groups.
Keywords
Publishing Year
Journal Title
Chemistry – A European Journal
Volume
27
Issue
57
Page
14299-14306
LibreCat-ID
Cite this
Albrecht R, Hoelzel M, Beccard H, et al. Potassium Ion Conductivity in the Cubic Labyrinth of a Piezoelectric, Antiferromagnetic Oxoferrate(III) Tellurate(VI). Chemistry – A European Journal. 2021;27(57):14299-14306. doi:10.1002/chem.202102464
Albrecht, R., Hoelzel, M., Beccard, H., Rüsing, M., Eng, L., Doert, T., & Ruck, M. (2021). Potassium Ion Conductivity in the Cubic Labyrinth of a Piezoelectric, Antiferromagnetic Oxoferrate(III) Tellurate(VI). Chemistry – A European Journal, 27(57), 14299–14306. https://doi.org/10.1002/chem.202102464
@article{Albrecht_Hoelzel_Beccard_Rüsing_Eng_Doert_Ruck_2021, title={Potassium Ion Conductivity in the Cubic Labyrinth of a Piezoelectric, Antiferromagnetic Oxoferrate(III) Tellurate(VI)}, volume={27}, DOI={10.1002/chem.202102464}, number={57}, journal={Chemistry – A European Journal}, publisher={Wiley}, author={Albrecht, Ralf and Hoelzel, Markus and Beccard, Henrik and Rüsing, Michael and Eng, Lukas and Doert, Thomas and Ruck, Michael}, year={2021}, pages={14299–14306} }
Albrecht, Ralf, Markus Hoelzel, Henrik Beccard, Michael Rüsing, Lukas Eng, Thomas Doert, and Michael Ruck. “Potassium Ion Conductivity in the Cubic Labyrinth of a Piezoelectric, Antiferromagnetic Oxoferrate(III) Tellurate(VI).” Chemistry – A European Journal 27, no. 57 (2021): 14299–306. https://doi.org/10.1002/chem.202102464.
R. Albrecht et al., “Potassium Ion Conductivity in the Cubic Labyrinth of a Piezoelectric, Antiferromagnetic Oxoferrate(III) Tellurate(VI),” Chemistry – A European Journal, vol. 27, no. 57, pp. 14299–14306, 2021, doi: 10.1002/chem.202102464.
Albrecht, Ralf, et al. “Potassium Ion Conductivity in the Cubic Labyrinth of a Piezoelectric, Antiferromagnetic Oxoferrate(III) Tellurate(VI).” Chemistry – A European Journal, vol. 27, no. 57, Wiley, 2021, pp. 14299–306, doi:10.1002/chem.202102464.