Bi-Objective Orienteering: Towards a Dynamic Multi-objective Evolutionary Algorithm
J. Bossek, C. Grimme, S. Meisel, G. Rudolph, H. Trautmann, in: K. Deb, E. Goodman, C.A. Coello Coello, K. Klamroth, K. Miettinen, S. Mostaghim, P. Reed (Eds.), Evolutionary Multi-Criterion Optimization (EMO), Springer International Publishing, Cham, 2019, pp. 516–528.
Download
No fulltext has been uploaded.
Conference Paper
| Published
| English
Author
Bossek, JakobLibreCat ;
Grimme, Christian;
Meisel, Stephan;
Rudolph, Günter;
Trautmann, Heike
Editor
Deb, Kalyanmoy;
Goodman, Erik;
Coello Coello, Carlos A.;
Klamroth, Kathrin;
Miettinen, Kaisa;
Mostaghim, Sanaz;
Reed, Patrick
Department
Abstract
We tackle a bi-objective dynamic orienteering problem where customer requests arise as time passes by. The goal is to minimize the tour length traveled by a single delivery vehicle while simultaneously keeping the number of dismissed dynamic customers to a minimum. We propose a dynamic Evolutionary Multi-Objective Algorithm which is grounded on insights gained from a previous series of work on an a-posteriori version of the problem, where all request times are known in advance. In our experiments, we simulate different decision maker strategies and evaluate the development of the Pareto-front approximations on exemplary problem instances. It turns out, that despite severely reduced computational budget and no oracle-knowledge of request times the dynamic EMOA is capable of producing approximations which partially dominate the results of the a-posteriori EMOA and dynamic integer linear programming strategies.
Keywords
Publishing Year
Proceedings Title
Evolutionary Multi-Criterion Optimization (EMO)
forms.conference.field.series_title_volume.label
Lecture Notes in Computer Science
Page
516–528
ISBN
LibreCat-ID
Cite this
Bossek J, Grimme C, Meisel S, Rudolph G, Trautmann H. Bi-Objective Orienteering: Towards a Dynamic Multi-objective Evolutionary Algorithm. In: Deb K, Goodman E, Coello Coello CA, et al., eds. Evolutionary Multi-Criterion Optimization (EMO). Lecture Notes in Computer Science. Springer International Publishing; 2019:516–528. doi:10.1007/978-3-030-12598-1_41
Bossek, J., Grimme, C., Meisel, S., Rudolph, G., & Trautmann, H. (2019). Bi-Objective Orienteering: Towards a Dynamic Multi-objective Evolutionary Algorithm. In K. Deb, E. Goodman, C. A. Coello Coello, K. Klamroth, K. Miettinen, S. Mostaghim, & P. Reed (Eds.), Evolutionary Multi-Criterion Optimization (EMO) (pp. 516–528). Springer International Publishing. https://doi.org/10.1007/978-3-030-12598-1_41
@inproceedings{Bossek_Grimme_Meisel_Rudolph_Trautmann_2019, place={Cham}, series={Lecture Notes in Computer Science}, title={Bi-Objective Orienteering: Towards a Dynamic Multi-objective Evolutionary Algorithm}, DOI={10.1007/978-3-030-12598-1_41}, booktitle={Evolutionary Multi-Criterion Optimization (EMO)}, publisher={Springer International Publishing}, author={Bossek, Jakob and Grimme, Christian and Meisel, Stephan and Rudolph, Günter and Trautmann, Heike}, editor={Deb, Kalyanmoy and Goodman, Erik and Coello Coello, Carlos A. and Klamroth, Kathrin and Miettinen, Kaisa and Mostaghim, Sanaz and Reed, Patrick}, year={2019}, pages={516–528}, collection={Lecture Notes in Computer Science} }
Bossek, Jakob, Christian Grimme, Stephan Meisel, Günter Rudolph, and Heike Trautmann. “Bi-Objective Orienteering: Towards a Dynamic Multi-Objective Evolutionary Algorithm.” In Evolutionary Multi-Criterion Optimization (EMO), edited by Kalyanmoy Deb, Erik Goodman, Carlos A. Coello Coello, Kathrin Klamroth, Kaisa Miettinen, Sanaz Mostaghim, and Patrick Reed, 516–528. Lecture Notes in Computer Science. Cham: Springer International Publishing, 2019. https://doi.org/10.1007/978-3-030-12598-1_41.
J. Bossek, C. Grimme, S. Meisel, G. Rudolph, and H. Trautmann, “Bi-Objective Orienteering: Towards a Dynamic Multi-objective Evolutionary Algorithm,” in Evolutionary Multi-Criterion Optimization (EMO), 2019, pp. 516–528, doi: 10.1007/978-3-030-12598-1_41.
Bossek, Jakob, et al. “Bi-Objective Orienteering: Towards a Dynamic Multi-Objective Evolutionary Algorithm.” Evolutionary Multi-Criterion Optimization (EMO), edited by Kalyanmoy Deb et al., Springer International Publishing, 2019, pp. 516–528, doi:10.1007/978-3-030-12598-1_41.