Runtime Analysis of Randomized Search Heuristics for Dynamic Graph Coloring

J. Bossek, F. Neumann, P. Peng, D. Sudholt, in: Proceedings of the Genetic and Evolutionary Computation Conference, Association for Computing Machinery, New York, NY, USA, 2019, pp. 1443–1451.

Download
No fulltext has been uploaded.
Conference Paper | Published | English
Author
Bossek, JakobLibreCat ; Neumann, Frank; Peng, Pan; Sudholt, Dirk
Abstract
We contribute to the theoretical understanding of randomized search heuristics for dynamic problems. We consider the classical graph coloring problem and investigate the dynamic setting where edges are added to the current graph. We then analyze the expected time for randomized search heuristics to recompute high quality solutions. This includes the (1+1) EA and RLS in a setting where the number of colors is bounded and we are minimizing the number of conflicts as well as iterated local search algorithms that use an unbounded color palette and aim to use the smallest colors and - as a consequence - the smallest number of colors. We identify classes of bipartite graphs where reoptimization is as hard as or even harder than optimization from scratch, i. e. starting with a random initialization. Even adding a single edge can lead to hard symmetry problems. However, graph classes that are hard for one algorithm turn out to be easy for others. In most cases our bounds show that reoptimization is faster than optimizing from scratch. Furthermore, we show how to speed up computations by using problem specific operators concentrating on parts of the graph where changes have occurred.
Publishing Year
Proceedings Title
Proceedings of the Genetic and Evolutionary Computation Conference
forms.conference.field.series_title_volume.label
GECCO ’19
Page
1443–1451
LibreCat-ID

Cite this

Bossek J, Neumann F, Peng P, Sudholt D. Runtime Analysis of Randomized Search Heuristics for Dynamic Graph Coloring. In: Proceedings of the Genetic and Evolutionary Computation Conference. GECCO ’19. Association for Computing Machinery; 2019:1443–1451. doi:10.1145/3321707.3321792
Bossek, J., Neumann, F., Peng, P., & Sudholt, D. (2019). Runtime Analysis of Randomized Search Heuristics for Dynamic Graph Coloring. Proceedings of the Genetic and Evolutionary Computation Conference, 1443–1451. https://doi.org/10.1145/3321707.3321792
@inproceedings{Bossek_Neumann_Peng_Sudholt_2019, place={New York, NY, USA}, series={GECCO ’19}, title={Runtime Analysis of Randomized Search Heuristics for Dynamic Graph Coloring}, DOI={10.1145/3321707.3321792}, booktitle={Proceedings of the Genetic and Evolutionary Computation Conference}, publisher={Association for Computing Machinery}, author={Bossek, Jakob and Neumann, Frank and Peng, Pan and Sudholt, Dirk}, year={2019}, pages={1443–1451}, collection={GECCO ’19} }
Bossek, Jakob, Frank Neumann, Pan Peng, and Dirk Sudholt. “Runtime Analysis of Randomized Search Heuristics for Dynamic Graph Coloring.” In Proceedings of the Genetic and Evolutionary Computation Conference, 1443–1451. GECCO ’19. New York, NY, USA: Association for Computing Machinery, 2019. https://doi.org/10.1145/3321707.3321792.
J. Bossek, F. Neumann, P. Peng, and D. Sudholt, “Runtime Analysis of Randomized Search Heuristics for Dynamic Graph Coloring,” in Proceedings of the Genetic and Evolutionary Computation Conference, 2019, pp. 1443–1451, doi: 10.1145/3321707.3321792.
Bossek, Jakob, et al. “Runtime Analysis of Randomized Search Heuristics for Dynamic Graph Coloring.” Proceedings of the Genetic and Evolutionary Computation Conference, Association for Computing Machinery, 2019, pp. 1443–1451, doi:10.1145/3321707.3321792.

Export

Marked Publications

Open Data LibreCat

Search this title in

Google Scholar
ISBN Search