Stable bipolarons in open quantum systems

M. Moroder, M. Grundner, F. Damanet, U. Schollwöck, S. Mardazad, S. Flannigan, T. Köhler, S. Paeckel, Physical Review B 107, 214310 (2023) (2022).

Download
No fulltext has been uploaded.
Journal Article | English
Author
Moroder, Mattia; Grundner, Martin; Damanet, François; Schollwöck, Ulrich; Mardazad, Sam; Flannigan, Stuart; Köhler, Thomas; Paeckel, Sebastian
Abstract
Recent advances in numerical methods significantly pushed forward the understanding of electrons coupled to quantized lattice vibrations. At this stage, it becomes increasingly important to also account for the effects of physically inevitable environments. In particular, we study the transport properties of the Hubbard-Holstein Hamiltonian that models a large class of materials characterized by strong electron-phonon coupling, in contact with a dissipative environment. Even in the one-dimensional and isolated case, simulating the quantum dynamics of such a system with high accuracy is very challenging due to the infinite dimensionality of the phononic Hilbert spaces. For this reason, the effects of dissipation on the conductance properties of such systems have not been investigated systematically so far. We combine the non-Markovian hierarchy of pure states method and the Markovian quantum jumps method with the newly introduced projected purified density-matrix renormalization group, creating powerful tensor-network methods for dissipative quantum many-body systems. Investigating their numerical properties, we find a significant speedup up to a factor $\sim 30$ compared to conventional tensor-network techniques. We apply these methods to study dissipative quenches, aiming for an in-depth understanding of the formation, stability, and quasi-particle properties of bipolarons. Surprisingly, our results show that in the metallic phase dissipation localizes the bipolarons, which is reminiscent of an indirect quantum Zeno effect. However, the bipolaronic binding energy remains mainly unaffected, even in the presence of strong dissipation, exhibiting remarkable bipolaron stability. These findings shed light on the problem of designing real materials exhibiting phonon-mediated high-$T_\mathrm{C}$ superconductivity.
Publishing Year
Journal Title
Physical Review B 107, 214310 (2023)
LibreCat-ID

Cite this

Moroder M, Grundner M, Damanet F, et al. Stable bipolarons in open quantum systems. Physical Review B 107, 214310 (2023). Published online 2022. doi:10.1103/PhysRevB.107.214310
Moroder, M., Grundner, M., Damanet, F., Schollwöck, U., Mardazad, S., Flannigan, S., Köhler, T., & Paeckel, S. (2022). Stable bipolarons in open quantum systems. Physical Review B 107, 214310 (2023). https://doi.org/10.1103/PhysRevB.107.214310
@article{Moroder_Grundner_Damanet_Schollwöck_Mardazad_Flannigan_Köhler_Paeckel_2022, title={Stable bipolarons in open quantum systems}, DOI={10.1103/PhysRevB.107.214310}, journal={Physical Review B 107, 214310 (2023)}, author={Moroder, Mattia and Grundner, Martin and Damanet, François and Schollwöck, Ulrich and Mardazad, Sam and Flannigan, Stuart and Köhler, Thomas and Paeckel, Sebastian}, year={2022} }
Moroder, Mattia, Martin Grundner, François Damanet, Ulrich Schollwöck, Sam Mardazad, Stuart Flannigan, Thomas Köhler, and Sebastian Paeckel. “Stable Bipolarons in Open Quantum Systems.” Physical Review B 107, 214310 (2023), 2022. https://doi.org/10.1103/PhysRevB.107.214310.
M. Moroder et al., “Stable bipolarons in open quantum systems,” Physical Review B 107, 214310 (2023), 2022, doi: 10.1103/PhysRevB.107.214310.
Moroder, Mattia, et al. “Stable Bipolarons in Open Quantum Systems.” Physical Review B 107, 214310 (2023), 2022, doi:10.1103/PhysRevB.107.214310.

Export

Marked Publications

Open Data LibreCat

Sources

arXiv 2207.08243

Search this title in

Google Scholar