Existence of small ordered orthogonal arrays
K. Schmidt, C. Weiß, Journal of Combinatorial Designs 31 (2023) 422–431.
Download
No fulltext has been uploaded.
Journal Article
| Published
| English
Author
Schmidt, Kai‐Uwe;
Weiß, CharleneLibreCat
Department
Abstract
We show that there exist ordered orthogonal arrays, whose sizes deviate from the Rao bound by a factor that is polynomial in the parameters of the ordered orthogonal array. The proof is nonconstructive and based on a probabilistic method due to Kuperberg, Lovett and Peled.
Publishing Year
Journal Title
Journal of Combinatorial Designs
Volume
31
Issue
9
Page
422-431
LibreCat-ID
Cite this
Schmidt K, Weiß C. Existence of small ordered orthogonal arrays. Journal of Combinatorial Designs. 2023;31(9):422-431. doi:10.1002/jcd.21903
Schmidt, K., & Weiß, C. (2023). Existence of small ordered orthogonal arrays. Journal of Combinatorial Designs, 31(9), 422–431. https://doi.org/10.1002/jcd.21903
@article{Schmidt_Weiß_2023, title={Existence of small ordered orthogonal arrays}, volume={31}, DOI={10.1002/jcd.21903}, number={9}, journal={Journal of Combinatorial Designs}, publisher={Wiley}, author={Schmidt, Kai‐Uwe and Weiß, Charlene}, year={2023}, pages={422–431} }
Schmidt, Kai‐Uwe, and Charlene Weiß. “Existence of Small Ordered Orthogonal Arrays.” Journal of Combinatorial Designs 31, no. 9 (2023): 422–31. https://doi.org/10.1002/jcd.21903.
K. Schmidt and C. Weiß, “Existence of small ordered orthogonal arrays,” Journal of Combinatorial Designs, vol. 31, no. 9, pp. 422–431, 2023, doi: 10.1002/jcd.21903.
Schmidt, Kai‐Uwe, and Charlene Weiß. “Existence of Small Ordered Orthogonal Arrays.” Journal of Combinatorial Designs, vol. 31, no. 9, Wiley, 2023, pp. 422–31, doi:10.1002/jcd.21903.