Nontrivial $t$-designs in polar spaces exist for all $t$
C. Weiß, Des. Codes Cryptogr. (n.d.).
Download
No fulltext has been uploaded.
Journal Article
| Submitted
| English
Author
Department
Abstract
A finite classical polar space of rank $n$ consists of the totally isotropic
subspaces of a finite vector space over $\mathbb{F}_q$ equipped with a
nondegenerate form such that $n$ is the maximal dimension of such a subspace. A
$t$-$(n,k,\lambda)$ design in a finite classical polar space of rank $n$ is a
collection $Y$ of totally isotropic $k$-spaces such that each totally isotropic
$t$-space is contained in exactly $\lambda$ members of $Y$. Nontrivial examples
are currently only known for $t\leq 2$. We show that $t$-$(n,k,\lambda)$
designs in polar spaces exist for all $t$ and $q$ provided that
$k>\frac{21}{2}t$ and $n$ is sufficiently large enough. The proof is based on a
probabilistic method by Kuperberg, Lovett, and Peled, and it is thus
nonconstructive.
Publishing Year
Journal Title
Des. Codes Cryptogr.
LibreCat-ID
Cite this
Weiß C. Nontrivial $t$-designs in polar spaces exist for all $t$. Des Codes Cryptogr. doi:10.1007/s10623-024-01471-1
Weiß, C. (n.d.). Nontrivial $t$-designs in polar spaces exist for all $t$. Des. Codes Cryptogr. https://doi.org/10.1007/s10623-024-01471-1
@article{Weiß, title={Nontrivial $t$-designs in polar spaces exist for all $t$}, DOI={10.1007/s10623-024-01471-1}, journal={Des. Codes Cryptogr.}, author={Weiß, Charlene} }
Weiß, Charlene. “Nontrivial $t$-Designs in Polar Spaces Exist for All $t$.” Des. Codes Cryptogr., n.d. https://doi.org/10.1007/s10623-024-01471-1.
C. Weiß, “Nontrivial $t$-designs in polar spaces exist for all $t$,” Des. Codes Cryptogr., doi: 10.1007/s10623-024-01471-1.
Weiß, Charlene. “Nontrivial $t$-Designs in Polar Spaces Exist for All $t$.” Des. Codes Cryptogr., doi:10.1007/s10623-024-01471-1.