(How) do advanced data and analyses enable HR analytics success? A neo-configurational analysis

S. Strohmeier, J. Collet, R. Kabst, Baltic Journal of Management 17 (2022) 285–303.

Download
No fulltext has been uploaded.
Journal Article | Published | English
Author
Strohmeier, Stefan; Collet, Julian; Kabst, Rüdiger
Abstract
<jats:sec><jats:title content-type="abstract-subheading">Purpose</jats:title><jats:p>Enabled by increased (“big”) data stocks and advanced (“machine learning”) analyses, the concept of human resource analytics (HRA) is expected to systematically improve decisions in human resource management (HRM). Since so far empirical evidence on this is, however, lacking, the authors' study examines which combinations of data and analyses are employed and which combinations deliver on the promise of improved decision quality.</jats:p></jats:sec><jats:sec><jats:title content-type="abstract-subheading">Design/methodology/approach</jats:title><jats:p>Theoretically, the paper employs a neo-configurational approach for founding and conceptualizing HRA. Methodically, based on a sample of German organizations, two varieties (crisp set and multi-value) of qualitative comparative analysis (QCA) are employed to identify combinations of data and analyses sufficient and necessary for HRA success.</jats:p></jats:sec><jats:sec><jats:title content-type="abstract-subheading">Findings</jats:title><jats:p>The authors' study identifies existing configurations of data and analyses in HRM and uncovers which of these configurations cause improved decision quality. By evidencing that and which combinations of data and analyses conjuncturally cause decision quality, the authors' study provides a first confirmation of HRA success.</jats:p></jats:sec><jats:sec><jats:title content-type="abstract-subheading">Research limitations/implications</jats:title><jats:p>Major limitations refer to the cross-sectional and national sample and the usage of subjective measures. Major implications are the suitability of neo-configurational approaches for future research on HRA, while deeper conceptualizing and researching both the characteristics and outcomes of HRA constitutes a core future task.</jats:p></jats:sec><jats:sec><jats:title content-type="abstract-subheading">Originality/value</jats:title><jats:p>The authors' paper employs an innovative theoretical-methodical approach to explain and analyze conditions that conjuncturally cause decision quality therewith offering much needed empirical evidence on HRA success.</jats:p></jats:sec>
Publishing Year
Journal Title
Baltic Journal of Management
Volume
17
Issue
3
Page
285-303
ISSN
LibreCat-ID

Cite this

Strohmeier S, Collet J, Kabst R. (How) do advanced data and analyses enable HR analytics success? A neo-configurational analysis. Baltic Journal of Management. 2022;17(3):285-303. doi:10.1108/bjm-05-2021-0188
Strohmeier, S., Collet, J., & Kabst, R. (2022). (How) do advanced data and analyses enable HR analytics success? A neo-configurational analysis. Baltic Journal of Management, 17(3), 285–303. https://doi.org/10.1108/bjm-05-2021-0188
@article{Strohmeier_Collet_Kabst_2022, title={(How) do advanced data and analyses enable HR analytics success? A neo-configurational analysis}, volume={17}, DOI={10.1108/bjm-05-2021-0188}, number={3}, journal={Baltic Journal of Management}, publisher={Emerald}, author={Strohmeier, Stefan and Collet, Julian and Kabst, Rüdiger}, year={2022}, pages={285–303} }
Strohmeier, Stefan, Julian Collet, and Rüdiger Kabst. “(How) Do Advanced Data and Analyses Enable HR Analytics Success? A Neo-Configurational Analysis.” Baltic Journal of Management 17, no. 3 (2022): 285–303. https://doi.org/10.1108/bjm-05-2021-0188.
S. Strohmeier, J. Collet, and R. Kabst, “(How) do advanced data and analyses enable HR analytics success? A neo-configurational analysis,” Baltic Journal of Management, vol. 17, no. 3, pp. 285–303, 2022, doi: 10.1108/bjm-05-2021-0188.
Strohmeier, Stefan, et al. “(How) Do Advanced Data and Analyses Enable HR Analytics Success? A Neo-Configurational Analysis.” Baltic Journal of Management, vol. 17, no. 3, Emerald, 2022, pp. 285–303, doi:10.1108/bjm-05-2021-0188.

Export

Marked Publications

Open Data LibreCat

Search this title in

Google Scholar