Decision Support Ecosystems: Assisted Low-Code Development of Tailored Decision Support Systems
J. Kirchhoff, Decision Support Ecosystems: Assisted Low-Code Development of Tailored Decision Support Systems, Universität Paderborn, 2023.
Download (ext.)
Dissertation
| English
Author
Supervisor
Abstract
Erfolg und Misserfolg eines Unternehmens werden maßgeblich durch getroffene Entscheidungen beeinflusst. Daher verlassen sich Entscheider oft auf Entscheidungsunterstützungssysteme, die durch Datensimulation, -optimierung und -visualisierung bei der Identifizierung von geeigneten Entscheidungen unterstützen. Für eine optimale Unterstützung muss ein Entscheidungsunterstützungssystem (EUS) jedoch auf den Entscheidungsprozess eines Entscheiders abgestimmt sein und verfügbare Daten, Optimierungsziele, persönliche Präferenzen sowie weitere Einflussfaktoren berücksichtigen. EUS-Entwickler können aufgrund der Komplexität und Volatilität von Geschäftsumgebungen allerdings nicht alle potenziellen Entscheidungsprozesse während des Entwurfs eines EUS vorhersehen, wodurch ein EUS einem Entscheider häufig nur unzureichende Anpassungsmöglichkeiten an den individuellen Entscheidungsprozess bietet. Die Einzelanfertigung eines EUS, das auf einen Entscheidungsprozess zugeschnitten ist, ist ein kosten- und zeitintensives Unterfangen aufgrund der begrenzten Verfügbarkeit von Softwareentwicklern oder Missverständnissen zwischen Entwicklern und Entscheidern während der Entwicklung. Daher geben sich Entscheider möglicherweise mit einem handelsüblichen EUS zufrieden, das nicht vollständig mit ihrem Entscheidungsprozess übereinstimmt, suboptimale Entscheidungen begünstigt und so den Unternehmenserfolg negativ beeinflusst. In dieser Arbeit wird ein Ansatz vorgeschlagen, der es Entscheidern ermöglicht, selbst maßgeschneiderte Entscheidungsunterstützungssysteme zu entwickeln und so die Diskrepanz zwischen benötigter und tatsächlicher Entscheidungsunterstützung zu vermeiden. Dazu stellen EUS-Entwickler einen Teil der EUS-Funktionalität als wiederverwendbare Software-Dienste bereit ...
Decision making significantly determines the success or failure of a business. This motivates decision makers to rely on decision support systems for assistance in identifying high-quality decisions using data simulation, optimization, and visualization. However, for optimal assistance, a decision support system (DSS) must align with the decision-making process of a decision maker, which is characterized by available data, optimization goals, personal preferences, and other influences. Unfortunately, the increasing complexity and volatility of business environments prevent DSS developers to anticipate all potential decision-making processes during DSS design, and consequently, to provide decision makers with sufficient customization options. Commissioning a DSS that is tailored to a decision-making process is a cost- and time-intensive undertaking due to limited developer availability or misunderstandings between developers and decision makers. As a result, decision makers may settle for an off-the-shelf DSS that does not fully align with their decision-making process and potentially results in suboptimal decisions, thereby impairing business success.This thesis proposes an approach that enables decision makers to create tailored decision support systems themselves, thereby avoiding the aforementioned misalignment between provided and required decision support. The approach expects DSS developers to provide partial DSS functionality in the form of reusable software services. Using a low-code approach, non-programmers can then compose these services into a holistic DSS by modeling a decision-making process with the help of an assistance system. The contribution of the thesis is fourfold: First, the thesis explains how to design a service repository to capture available decision support services for the encompassing application domain. Second ...
Decision making significantly determines the success or failure of a business. This motivates decision makers to rely on decision support systems for assistance in identifying high-quality decisions using data simulation, optimization, and visualization. However, for optimal assistance, a decision support system (DSS) must align with the decision-making process of a decision maker, which is characterized by available data, optimization goals, personal preferences, and other influences. Unfortunately, the increasing complexity and volatility of business environments prevent DSS developers to anticipate all potential decision-making processes during DSS design, and consequently, to provide decision makers with sufficient customization options. Commissioning a DSS that is tailored to a decision-making process is a cost- and time-intensive undertaking due to limited developer availability or misunderstandings between developers and decision makers. As a result, decision makers may settle for an off-the-shelf DSS that does not fully align with their decision-making process and potentially results in suboptimal decisions, thereby impairing business success.This thesis proposes an approach that enables decision makers to create tailored decision support systems themselves, thereby avoiding the aforementioned misalignment between provided and required decision support. The approach expects DSS developers to provide partial DSS functionality in the form of reusable software services. Using a low-code approach, non-programmers can then compose these services into a holistic DSS by modeling a decision-making process with the help of an assistance system. The contribution of the thesis is fourfold: First, the thesis explains how to design a service repository to capture available decision support services for the encompassing application domain. Second ...
Publishing Year
LibreCat-ID
Cite this
Kirchhoff J. Decision Support Ecosystems: Assisted Low-Code Development of Tailored Decision Support Systems. Universität Paderborn; 2023. doi:10.17619/UNIPB/1-1845
Kirchhoff, J. (2023). Decision Support Ecosystems: Assisted Low-Code Development of Tailored Decision Support Systems. Universität Paderborn. https://doi.org/10.17619/UNIPB/1-1845
@book{Kirchhoff_2023, title={Decision Support Ecosystems: Assisted Low-Code Development of Tailored Decision Support Systems}, DOI={10.17619/UNIPB/1-1845}, publisher={Universität Paderborn}, author={Kirchhoff, Jonas}, year={2023} }
Kirchhoff, Jonas. Decision Support Ecosystems: Assisted Low-Code Development of Tailored Decision Support Systems. Universität Paderborn, 2023. https://doi.org/10.17619/UNIPB/1-1845.
J. Kirchhoff, Decision Support Ecosystems: Assisted Low-Code Development of Tailored Decision Support Systems. Universität Paderborn, 2023.
Kirchhoff, Jonas. Decision Support Ecosystems: Assisted Low-Code Development of Tailored Decision Support Systems. Universität Paderborn, 2023, doi:10.17619/UNIPB/1-1845.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Link(s) to Main File(s)
Access Level
Closed Access